module Decidable.Decidable import Data.Rel import Data.Fun %default total public export isNo : Dec a -> Bool isNo (Yes _) = False isNo (No _) = True public export isYes : Dec a -> Bool isYes (Yes _) = True isYes (No _) = False export Injective Yes where injective Refl = Refl export Injective No where injective Refl = Refl ||| Proof that some `Dec` is actually `Yes` public export data IsYes : Dec a -> Type where ItIsYes : IsYes (Yes prf) public export Uninhabited (IsYes (No contra)) where uninhabited ItIsYes impossible ||| Decide whether a 'Dec' is 'Yes' public export isItYes : (v : Dec a) -> Dec (IsYes v) isItYes (Yes _) = Yes ItIsYes isItYes (No _) = No absurd ||| An n-ary relation is decidable if we can make a `Dec` ||| of its result type for each combination of inputs public export IsDecidable : (k : Nat) -> (ts : Vect k Type) -> Rel ts -> Type IsDecidable k ts p = liftRel ts p Dec ||| Interface for decidable n-ary Relations public export interface Decidable k ts p where total decide : IsDecidable k ts p ||| Given a `Decidable` n-ary relation, provides a decision procedure for ||| this relation. decision : (ts : Vect k Type) -> (p : Rel ts) -> Decidable k ts p => liftRel ts p Dec decision ts p = decide {ts} {p}