module IFace import Stuff %default partial infixl 5 ==, /= interface Eq b where (==) : b -> b -> Bool (/=) : b -> b -> Bool Eq Nat where (==) Z Z = True (==) (S j) (S k) = j == k (==) _ _ = False (/=) x y = not (x == y) [silly] Eq Nat where (==) Z Z = False (==) (S j) (S k) = j == k (==) _ _ = True (/=) x y = not (x == y) Eq a => Eq (List a) where (==) [] [] = True (==) (x :: xs) (y :: ys) = x == y && xs == ys (==) _ _ = False (/=) x y = not (x == y) (Eq a, Eq b) => Eq (a, b) where (==) (x, y) (x', y') = x == x' && y == y' [alsoSilly] Eq a => Eq (List a) where (==) [] [] = False (==) (x :: xs) (y :: ys) = x == y && xs == ys (==) _ _ = True (/=) x y = not (x == y) test : ((Eq b, Eq b, Eq a), Eq b) => a -> a -> Bool test x y = x == y interface DecEq a where decEq : (x : a) -> (y : a) -> Dec (x = y) -- partial! eqNat : (x : Nat) -> (y : Nat) -> Dec (x = y) eqNat (S x) (S y) = case eqNat x y of Yes Refl => Yes Refl eqNat Z Z = Yes Refl DecEq Nat where decEq = eqNat data Vect : _ -> Type -> Type where Nil : Vect Z a (::) : a -> Vect k a -> Vect (S k) a Eq a => Eq (Vect n a) where (==) [] [] = True (==) (x :: xs) (y :: ys) = x == y && xs == ys (==) _ _ = False (/=) xs ys = not (xs == ys) v1 : DPair Nat (\n => Vect n Nat) v1 = MkDPair _ [Z, S Z] v2 : DPair Nat (\n => Vect n Nat) v2 = MkDPair _ [Z, Z] (DecEq a, {t : a} -> Eq (p t)) => Eq (DPair a p) where (==) (MkDPair l r) (MkDPair l' r') = case decEq l l' of Yes Refl => r == r' No _ => False