module Data.Logic.Propositional %default total -- Idris uses intuitionistic logic, so it does not validate the -- principle of excluded middle (PEM) or similar theorems of classical -- logic. But it does validate certain relations among these -- propositions, and that's what's in this file. ||| The principle of excluded middle PEM : Type -> Type PEM p = Either p (Not p) ||| Double negation elimination DNE : Type -> Type DNE p = Not (Not p) -> p ||| The consensus theorem (at least, the interesting part) Consensus : Type -> Type -> Type -> Type Consensus p q r = (q, r) -> Either (p, q) (Not p, r) ||| Peirce's law Peirce : Type -> Type -> Type Peirce p q = ((p -> q) -> p) -> p ||| Not sure if this one has a name, so call it Frege's law Frege : Type -> Type -> Type -> Type Frege p q r = (p -> r) -> (q -> r) -> ((p -> q) -> q) -> r ||| The converse of contraposition: (p -> q) -> Not q -> Not p Transposition : Type -> Type -> Type Transposition p q = (Not q -> Not p) -> p -> q ||| This isn't a good name. Switch : Type -> Type Switch p = (Not p -> p) -> p -- PEM and the others can't be proved outright, but it is possible to -- prove the double negations (DN) of all of them. ||| The double negation of a proposition DN : Type -> Type DN p = Not $ Not p pemDN : DN $ PEM p pemDN f = f $ Right $ f . Left dneDN : DN $ DNE p dneDN f = f $ \g => void $ g $ \x => f $ \_ => x consensusDN : DN $ Consensus p q r consensusDN f = f $ \(y, z) => Right (\x => f $ \(_, _) => Left (x, y), z) peirceDN : DN $ Peirce p q peirceDN f = f $ \g => g $ \x => void $ f $ \_ => x fregeDN : DN $ Frege p q r fregeDN f = f $ \g, h, i => h $ i $ \x => void $ f $ \_, _, _ => g x transpositionDN : DN $ Transposition p q transpositionDN f = f $ \g, x => void $ g (\y => f $ \_, _ => y) x switchDN : DN $ Switch p switchDN f = f $ \g => g $ \x => f $ \_ => x -- It's easy to prove all these theorems assuming PEM. dnePEM : PEM p -> DNE p dnePEM (Left l) _ = l dnePEM (Right r) f = void $ f r consensusPEM : PEM p -> Consensus p q r consensusPEM (Left l) (y, _) = Left (l, y) consensusPEM (Right r) (_, z) = Right (r, z) peircePEM : PEM p -> Peirce p q peircePEM (Left l) _ = l peircePEM (Right r) f = f $ absurd . r fregePEM : PEM p -> Frege p q r fregePEM (Left l) f _ _ = f l fregePEM (Right r) _ g h = g $ h $ absurd . r transpositionPEM : PEM p -> Transposition q p transpositionPEM (Left l) _ _ = l transpositionPEM (Right r) f x = void $ f r x switchPEM : PEM p -> Switch p switchPEM (Left l) _ = l switchPEM (Right r) f = f r -- It's trivial to prove these theorems assuming double negation -- elimination (DNE), since their double negations can all be proved. ||| Eliminate double negations EDN : DN p -> DNE p -> p EDN f g = g f pemDNE : DNE (PEM p) -> PEM p pemDNE = EDN pemDN -- It's possible to prove the theorems assuming Peirce's law, but some -- thought must be given to choosing the right instances. Peirce's law -- is therefore weaker than PEM on an instance-by-instance basis, but -- all the instances together are equivalent. pemPeirce : Peirce (PEM p) Void -> PEM p pemPeirce f = f $ \g => Right $ g . Left dnePeirce : Peirce p Void -> DNE p dnePeirce f g = f $ absurd . g consensusPeirce : Peirce (Consensus p q r) Void -> Consensus p q r consensusPeirce f (y, z) = f (\g, (_, _) => Right (\x => g (\_ => Left (x, y)), z)) (y, z) fregePeirce : Peirce (Frege p q r) Void -> Frege p q r fregePeirce f g h i = f (\j, _, _, _ => h $ i $ \x => void $ j $ \_, _, _ => g x) g h i transpositionPeirce : Peirce (Transposition p q) Void -> Transposition p q transpositionPeirce f g x = f (\h, _, _ => void $ g (\y => h $ \_, _ => y) x) (\j, _ => g j x) x -- There are a variety of single axioms sufficient for deriving all of -- classical logic. The earliest of these is known as Nicod's axiom, -- but it is written using only nand operators and doesn't lend itself -- to Idris's type system. Meredith's axiom, on the other hand, is -- written using implication and negation. ||| Meredith's axiom, sufficient for deriving all of classical logic Meredith : (p, q, r, s, t : Type) -> Type Meredith p q r s t = ((((p -> q) -> Not r -> Not s) -> r) -> t) -> (t -> p) -> s -> p -- The Meredith axiom implies all of classical logic, and so in -- particular it implies PEM, and therefore cannot be proved in -- intuitionistic logic. As usual, however, its double negation can be -- proved. meredithDN : DN $ Meredith p q r s t meredithDN f = f $ \g, h, x => h $ g $ \i => void $ i (\y => void $ f $ \_, _, _ => y) (\z => f $ \_, _, _ => h $ g $ \_ => z) x -- Meredith can be proved assuming PEM, since the type system itself -- takes care of the rest. meredithPEM : PEM p -> Meredith p q r s t meredithPEM (Left l) _ _ _ = l meredithPEM (Right r) f g x = g $ f $ \h => void $ h (absurd . r) (\z => r $ g $ f (\_ => z)) x