module Data.Fin import Data.List1 import public Data.Maybe import Data.Nat import Decidable.Equality.Core %default total ||| Numbers strictly less than some bound. The name comes from "finite sets". ||| ||| It's probably not a good idea to use `Fin` for arithmetic, and they will be ||| exceedingly inefficient at run time. ||| @ n the upper bound public export data Fin : (n : Nat) -> Type where FZ : Fin (S k) FS : Fin k -> Fin (S k) ||| Cast between Fins with equal indices public export cast : {n : Nat} -> (0 eq : m = n) -> Fin m -> Fin n cast {n = S _} eq FZ = FZ cast {n = Z} eq FZ impossible cast {n = S _} eq (FS k) = FS (cast (succInjective _ _ eq) k) cast {n = Z} eq (FS k) impossible export Uninhabited (Fin Z) where uninhabited FZ impossible uninhabited (FS f) impossible export Uninhabited (FZ = FS k) where uninhabited Refl impossible export Uninhabited (FS k = FZ) where uninhabited Refl impossible export fsInjective : FS m = FS n -> m = n fsInjective Refl = Refl export Eq (Fin n) where (==) FZ FZ = True (==) (FS k) (FS k') = k == k' (==) _ _ = False ||| Convert a Fin to a Nat public export finToNat : Fin n -> Nat finToNat FZ = Z finToNat (FS k) = S $ finToNat k ||| `finToNat` is injective export finToNatInjective : (fm : Fin k) -> (fn : Fin k) -> (finToNat fm) = (finToNat fn) -> fm = fn finToNatInjective FZ FZ _ = Refl finToNatInjective (FS _) FZ Refl impossible finToNatInjective FZ (FS _) Refl impossible finToNatInjective (FS m) (FS n) prf = cong FS $ finToNatInjective m n $ succInjective (finToNat m) (finToNat n) prf export Cast (Fin n) Nat where cast = finToNat ||| Convert a Fin to an Integer public export finToInteger : Fin n -> Integer finToInteger FZ = 0 finToInteger (FS k) = 1 + finToInteger k export Cast (Fin n) Integer where cast = finToInteger ||| Weaken the bound on a Fin by 1 public export weaken : Fin n -> Fin (S n) weaken FZ = FZ weaken (FS k) = FS $ weaken k ||| Weaken the bound on a Fin by some amount public export weakenN : (0 n : Nat) -> Fin m -> Fin (m + n) weakenN n FZ = FZ weakenN n (FS f) = FS $ weakenN n f ||| Weaken the bound on a Fin using a constructive comparison public export weakenLTE : Fin n -> LTE n m -> Fin m weakenLTE FZ LTEZero impossible weakenLTE (FS _) LTEZero impossible weakenLTE FZ (LTESucc _) = FZ weakenLTE (FS x) (LTESucc y) = FS $ weakenLTE x y ||| Attempt to tighten the bound on a Fin. ||| Return `Left` if the bound could not be tightened, or `Right` if it could. export strengthen : {n : _} -> Fin (S n) -> Either (Fin (S n)) (Fin n) strengthen {n = S _} FZ = Right FZ strengthen {n = S _} (FS i) with (strengthen i) strengthen (FS _) | Left x = Left $ FS x strengthen (FS _) | Right x = Right $ FS x strengthen f = Left f ||| Add some natural number to a Fin, extending the bound accordingly ||| @ n the previous bound ||| @ m the number to increase the Fin by public export shift : (m : Nat) -> Fin n -> Fin (m + n) shift Z f = f shift (S m) f = FS $ shift m f ||| The largest element of some Fin type public export last : {n : _} -> Fin (S n) last {n=Z} = FZ last {n=S _} = FS last ||| All of the Fin elements public export allFins : (n : Nat) -> List1 (Fin (S n)) allFins Z = FZ ::: [] allFins (S n) = FZ ::: map FS (forget (allFins n)) export Ord (Fin n) where compare FZ FZ = EQ compare FZ (FS _) = LT compare (FS _) FZ = GT compare (FS x) (FS y) = compare x y public export natToFin : Nat -> (n : Nat) -> Maybe (Fin n) natToFin Z (S _) = Just FZ natToFin (S k) (S j) = case natToFin k j of Just k' => Just (FS k') Nothing => Nothing natToFin _ _ = Nothing ||| Convert an `Integer` to a `Fin`, provided the integer is within bounds. ||| @n The upper bound of the Fin public export integerToFin : Integer -> (n : Nat) -> Maybe (Fin n) integerToFin x Z = Nothing -- make sure 'n' is concrete, to save reduction! integerToFin x n = if x >= 0 then natToFin (fromInteger x) n else Nothing ||| Allow overloading of Integer literals for Fin. ||| @ x the Integer that the user typed ||| @ prf an automatically-constructed proof that `x` is in bounds public export fromInteger : (x : Integer) -> {n : Nat} -> {auto 0 prf : (IsJust (integerToFin x n))} -> Fin n fromInteger {n} x {prf} with (integerToFin x n) fromInteger {n} x {prf = ItIsJust} | Just y = y ||| Convert an Integer to a Fin in the required bounds/ ||| This is essentially a composition of `mod` and `fromInteger` public export restrict : (n : Nat) -> Integer -> Fin (S n) restrict n val = let val' = assert_total (abs (mod val (cast (S n)))) in -- reasoning about primitives, so we need the -- 'believe_me'. It's fine because val' must be -- in the right range fromInteger {n = S n} val' {prf = believe_me {a=IsJust (Just val')} ItIsJust} -------------------------------------------------------------------------------- -- DecEq -------------------------------------------------------------------------------- public export DecEq (Fin n) where decEq FZ FZ = Yes Refl decEq FZ (FS f) = No absurd decEq (FS f) FZ = No absurd decEq (FS f) (FS f') = case decEq f f' of Yes p => Yes $ cong FS p No p => No $ p . fsInjective namespace Equality ||| Pointwise equality of Fins ||| It is sometimes complicated to prove equalities on type-changing ||| operations on Fins. ||| This inductive definition can be used to simplify proof. We can ||| recover proofs of equalities by using `homoPointwiseIsEqual`. public export data Pointwise : Fin m -> Fin n -> Type where FZ : Pointwise FZ FZ FS : Pointwise k l -> Pointwise (FS k) (FS l) infix 6 ~~~ ||| Convenient infix notation for the notion of pointwise equality of Fins public export (~~~) : Fin m -> Fin n -> Type (~~~) = Pointwise ||| Pointwise equality is reflexive export reflexive : {k : Fin m} -> k ~~~ k reflexive {k = FZ} = FZ reflexive {k = FS k} = FS reflexive ||| Pointwise equality is symmetric export symmetric : k ~~~ l -> l ~~~ k symmetric FZ = FZ symmetric (FS prf) = FS (symmetric prf) ||| Pointwise equality is transitive export transitive : j ~~~ k -> k ~~~ l -> j ~~~ l transitive FZ FZ = FZ transitive (FS prf) (FS prg) = FS (transitive prf prg) ||| Pointwise equality is compatible with cast export castEq : {k : Fin m} -> (0 eq : m = n) -> cast eq k ~~~ k castEq {k = FZ} Refl = FZ castEq {k = FS k} Refl = FS (castEq _) ||| The actual proof used by cast is irrelevant export congCast : {0 n, q : Nat} -> {k : Fin m} -> {l : Fin p} -> {0 eq1 : m = n} -> {0 eq2 : p = q} -> k ~~~ l -> cast eq1 k ~~~ cast eq2 l congCast eq = transitive (castEq _) (transitive eq $ symmetric $ castEq _) ||| Last is congruent wrt index equality export congLast : {m : Nat} -> (0 _ : m = n) -> last {n=m} ~~~ last {n} congLast Refl = reflexive export congShift : (m : Nat) -> k ~~~ l -> shift m k ~~~ shift m l congShift Z prf = prf congShift (S m) prf = FS (congShift m prf) ||| WeakenN is congruent wrt pointwise equality export congWeakenN : k ~~~ l -> weakenN n k ~~~ weakenN n l congWeakenN FZ = FZ congWeakenN (FS prf) = FS (congWeakenN prf) ||| Pointwise equality is propositional equality on Fins that have the same type export homoPointwiseIsEqual : {0 k, l : Fin m} -> k ~~~ l -> k === l homoPointwiseIsEqual FZ = Refl homoPointwiseIsEqual (FS prf) = cong FS (homoPointwiseIsEqual prf) ||| Pointwise equality is propositional equality modulo transport on Fins that ||| have provably equal types export hetPointwiseIsTransport : {0 k : Fin m} -> {0 l : Fin n} -> (0 eq : m === n) -> k ~~~ l -> k === rewrite eq in l hetPointwiseIsTransport Refl = homoPointwiseIsEqual export finToNatQuotient : k ~~~ l -> finToNat k === finToNat l finToNatQuotient FZ = Refl finToNatQuotient (FS prf) = cong S (finToNatQuotient prf) export weakenNeutral : (k : Fin n) -> weaken k ~~~ k weakenNeutral FZ = FZ weakenNeutral (FS k) = FS (weakenNeutral k) export weakenNNeutral : (0 m : Nat) -> (k : Fin n) -> weakenN m k ~~~ k weakenNNeutral m FZ = FZ weakenNNeutral m (FS k) = FS (weakenNNeutral m k)