module Data.Nat.Factor import Control.WellFounded import Data.Fin import Data.Fin.Extra import Data.Nat import Data.Nat.Equational import Syntax.PreorderReasoning %default total ||| Factor n p is a witness that p is indeed a factor of n, ||| i.e. there exists a q such that p * q = n. public export data Factor : Nat -> Nat -> Type where CofactorExists : {p, n : Nat} -> (q : Nat) -> n = p * q -> Factor p n ||| NotFactor n p is a witness that p is NOT a factor of n, ||| i.e. there exist a q and an r, greater than 0 but smaller than p, ||| such that p * q + r = n. public export data NotFactor : Nat -> Nat -> Type where ZeroNotFactorS : (n : Nat) -> NotFactor Z (S n) ProperRemExists : {p, n : Nat} -> (q : Nat) -> (r : Fin (pred p)) -> n = p * q + S (finToNat r) -> NotFactor p n ||| DecFactor n p is a result of the process which decides ||| whether or not p is a factor on n. public export data DecFactor : Nat -> Nat -> Type where ItIsFactor : Factor p n -> DecFactor p n ItIsNotFactor : NotFactor p n -> DecFactor p n ||| CommonFactor n m p is a witness that p is a factor of both n and m. public export data CommonFactor : Nat -> Nat -> Nat -> Type where CommonFactorExists : {a, b : Nat} -> (p : Nat) -> Factor p a -> Factor p b -> CommonFactor p a b ||| GCD n m p is a witness that p is THE greatest common factor of both n and m. ||| The second argument to the constructor is a function which for all q being ||| a factor of both n and m, proves that q is a factor of p. ||| ||| This is equivalent to a more straightforward definition, stating that for ||| all q being a factor of both n and m, q is less than or equal to p, but more ||| powerful and therefore more useful for further proofs. See below for a proof ||| that if q is a factor of p then q must be less than or equal to p. public export data GCD : Nat -> Nat -> Nat -> Type where MkGCD : {a, b, p : Nat} -> {auto notBothZero : NotBothZero a b} -> (CommonFactor p a b) -> ((q : Nat) -> CommonFactor q a b -> Factor q p) -> GCD p a b Uninhabited (Factor Z (S n)) where uninhabited (CofactorExists q prf) = uninhabited prf ||| Given a statement that p is factor of n, return its cofactor. export cofactor : Factor p n -> (q : Nat ** Factor q n) cofactor (CofactorExists q prf) = (q ** CofactorExists p $ rewrite multCommutative q p in prf) ||| 1 is a factor of any natural number. export oneIsFactor : (n : Nat) -> Factor 1 n oneIsFactor Z = CofactorExists Z Refl oneIsFactor (S k) = CofactorExists (S k) (rewrite plusZeroRightNeutral k in Refl) ||| 1 is the only factor of itself export oneSoleFactorOfOne : (a : Nat) -> Factor a 1 -> a = 1 oneSoleFactorOfOne 0 (CofactorExists _ prf) = sym prf oneSoleFactorOfOne 1 _ = Refl oneSoleFactorOfOne (S (S k)) (CofactorExists Z prf) = absurd . uninhabited $ trans prf $ multCommutative k 0 oneSoleFactorOfOne (S (S k)) (CofactorExists (S j) prf) = absurd . uninhabited $ trans (succInjective 0 (j + S (j + (k * S j))) prf) (plusCommutative j (S (j + (k * S j)))) ||| Every natural number is factor of itself. export Reflexive Nat Factor where reflexive = CofactorExists 1 $ rewrite multOneRightNeutral x in Refl ||| Factor relation is transitive. If b is factor of a and c is b factor of c ||| is also a factor of a. export Transitive Nat Factor where transitive (CofactorExists qb prfAB) (CofactorExists qc prfBC) = CofactorExists (qb * qc) $ rewrite prfBC in rewrite prfAB in rewrite multAssociative x qb qc in Refl export Preorder Nat Factor where multOneSoleNeutral : (a, b : Nat) -> S a = S a * b -> b = 1 multOneSoleNeutral Z b prf = rewrite sym $ plusZeroRightNeutral b in sym prf multOneSoleNeutral (S k) Z prf = absurd . uninhabited $ trans prf $ multCommutative k 0 multOneSoleNeutral (S k) (S Z) prf = Refl multOneSoleNeutral (S k) (S (S j)) prf = absurd . uninhabited . subtractEqLeft k {c = S j + S (j + (k * S j))} $ rewrite plusSuccRightSucc j (S (j + (k * S j))) in rewrite plusZeroRightNeutral k in rewrite plusAssociative k j (S (S (j + (k * S j)))) in rewrite sym $ plusCommutative j k in rewrite sym $ plusAssociative j k (S (S (j + (k * S j)))) in rewrite sym $ plusSuccRightSucc k (S (j + (k * S j))) in rewrite sym $ plusSuccRightSucc k (j + (k * S j)) in rewrite plusAssociative k j (k * S j) in rewrite plusCommutative k j in rewrite sym $ plusAssociative j k (k * S j) in rewrite sym $ multRightSuccPlus k (S j) in succInjective k (j + (S (S (j + (k * (S (S j))))))) $ succInjective (S k) (S (j + (S (S (j + (k * (S (S j)))))))) prf ||| If a is a factor of b and b is a factor of a, then a = b. public export Antisymmetric Nat Factor where antisymmetric {x = Z} (CofactorExists _ prfAB) _ = sym prfAB antisymmetric {y = Z} _ (CofactorExists _ prfBA) = prfBA antisymmetric {x = S a} {y = S _} (CofactorExists qa prfAB) (CofactorExists qb prfBA) = let qIs1 = multOneSoleNeutral a (qa * qb) $ rewrite multAssociative (S a) qa qb in rewrite sym prfAB in prfBA in rewrite prfAB in rewrite oneSoleFactorOfOne qa . CofactorExists qb $ sym qIs1 in rewrite multOneRightNeutral a in Refl PartialOrder Nat Factor where ||| No number can simultaneously be and not be a factor of another number. export factorNotFactorAbsurd : Factor p n -> Not (NotFactor p n) factorNotFactorAbsurd (CofactorExists _ prf) (ZeroNotFactorS _) = uninhabited prf factorNotFactorAbsurd (CofactorExists q prf) (ProperRemExists q' r contra) with (cmp q q') factorNotFactorAbsurd (CofactorExists q prf) (ProperRemExists (q + S d) r contra) | CmpLT d = SIsNotZ . subtractEqLeft (p * q) {b = S ((p * S d) + finToNat r)} $ rewrite plusZeroRightNeutral (p * q) in rewrite plusSuccRightSucc (p * S d) (finToNat r) in rewrite plusAssociative (p * q) (p * S d) (S (finToNat r)) in rewrite sym $ multDistributesOverPlusRight p q (S d) in rewrite sym contra in rewrite sym prf in Refl factorNotFactorAbsurd (CofactorExists q prf) (ProperRemExists q r contra) | CmpEQ = SIsNotZ $ sym $ plusLeftCancel (p * q) 0 (S (finToNat r)) $ trans (plusZeroRightNeutral (p * q)) $ trans (sym prf) contra factorNotFactorAbsurd (CofactorExists (q + S d) prf) (ProperRemExists q r contra) | CmpGT d = let srEQpPlusPD = the (p + (p * d) = S (finToNat r)) $ rewrite sym $ multRightSuccPlus p d in subtractEqLeft (p * q) $ rewrite sym $ multDistributesOverPlusRight p q (S d) in rewrite sym contra in sym prf in case p of Z => uninhabited srEQpPlusPD (S k) => succNotLTEzero . subtractLteLeft k {b = S (d + (k * d))} $ rewrite sym $ plusSuccRightSucc k (d + (k * d)) in rewrite plusZeroRightNeutral k in rewrite srEQpPlusPD in elemSmallerThanBound r ||| Anything is a factor of 0. export anythingFactorZero : (a : Nat) -> Factor a 0 anythingFactorZero a = CofactorExists 0 (sym $ multZeroRightZero a) ||| For all natural numbers p and q, p is a factor of (p * q). export multFactor : (p, q : Nat) -> Factor p (p * q) multFactor p q = CofactorExists q Refl ||| If n > 0 then any factor of n must be less than or equal to n. export factorLteNumber : Factor p n -> {auto positN : LTE 1 n} -> LTE p n factorLteNumber (CofactorExists Z prf) = let nIsZero = trans prf $ multCommutative p 0 oneLteZero = replace {p = LTE 1} nIsZero positN in absurd $ succNotLTEzero oneLteZero factorLteNumber (CofactorExists (S k) prf) = rewrite prf in leftFactorLteProduct p k ||| If p is a factor of n, then it is also a factor of (n + p). export plusDivisorAlsoFactor : Factor p n -> Factor p (n + p) plusDivisorAlsoFactor (CofactorExists q prf) = CofactorExists (S q) $ rewrite plusCommutative n p in rewrite multRightSuccPlus p q in cong (plus p) prf ||| If p is NOT a factor of n, then it also is NOT a factor of (n + p). export plusDivisorNeitherFactor : NotFactor p n -> NotFactor p (n + p) plusDivisorNeitherFactor (ZeroNotFactorS k) = rewrite plusZeroRightNeutral k in ZeroNotFactorS k plusDivisorNeitherFactor (ProperRemExists q r remPrf) = ProperRemExists (S q) r $ rewrite multRightSuccPlus p q in rewrite sym $ plusAssociative p (p * q) (S $ finToNat r) in rewrite plusCommutative p ((p * q) + S (finToNat r)) in rewrite remPrf in Refl ||| If p is a factor of n, then it is also a factor of any multiply of n. export multNAlsoFactor : Factor p n -> (a : Nat) -> {auto aok : LTE 1 a} -> Factor p (n * a) multNAlsoFactor _ Z = absurd $ succNotLTEzero aok multNAlsoFactor (CofactorExists q prf) (S a) = CofactorExists (q * S a) $ rewrite prf in sym $ multAssociative p q (S a) ||| If p is a factor of both n and m, then it is also a factor of their sum. export plusFactor : Factor p n -> Factor p m -> Factor p (n + m) plusFactor (CofactorExists qn prfN) (CofactorExists qm prfM) = rewrite prfN in rewrite prfM in rewrite sym $ multDistributesOverPlusRight p qn qm in multFactor p (qn + qm) ||| If p is a factor of a sum (n + m) and a factor of n, then it is also ||| a factor of m. This could be expressed more naturally with minus, but ||| it would be more difficult to prove, since minus lacks certain properties ||| that one would expect from decent subtraction. export minusFactor : {b : Nat} -> Factor p (a + b) -> Factor p a -> Factor p b minusFactor (CofactorExists qab prfAB) (CofactorExists qa prfA) = CofactorExists (minus qab qa) $ rewrite multDistributesOverMinusRight p qab qa in rewrite sym prfA in rewrite sym prfAB in replace {p = \x => b = minus (a + b) x} (plusZeroRightNeutral a) $ rewrite plusMinusLeftCancel a b 0 in rewrite minusZeroRight b in Refl ||| A decision procedure for whether of not p is a factor of n. export decFactor : (n, d : Nat) -> DecFactor d n decFactor Z Z = ItIsFactor $ reflexive {x = Z} decFactor (S k) Z = ItIsNotFactor $ ZeroNotFactorS k decFactor n (S d) = let Fraction n (S d) q r prf = Data.Fin.Extra.divMod n (S d) in case r of FZ => ItIsFactor $ CofactorExists q $ rewrite sym prf in rewrite plusCommutative (q * (S d)) 0 in multCommutative q (S d) (FS pr) => ItIsNotFactor $ ProperRemExists q pr ( rewrite multCommutative d q in rewrite sym $ multRightSuccPlus q d in sym prf ) ||| For all p greater than 1, if p is a factor of n, then it is NOT a factor ||| of (n + 1). export factNotSuccFact : {p : Nat} -> GT p 1 -> Factor p n -> NotFactor p (S n) factNotSuccFact {p = Z} pGt1 (CofactorExists q prf) = absurd $ succNotLTEzero pGt1 factNotSuccFact {p = S Z} pGt1 (CofactorExists q prf) = absurd . succNotLTEzero $ fromLteSucc pGt1 factNotSuccFact {p = S (S k)} pGt1 (CofactorExists q prf) = ProperRemExists q FZ ( rewrite sym prf in rewrite plusCommutative n 1 in Refl ) using (p : Nat) ||| The relation of common factor is symmetric, that is if p is a ||| common factor of n and m, then it is also a common factor of ||| m and n. public export Symmetric Nat (CommonFactor p) where symmetric (CommonFactorExists p pfx pfy) = CommonFactorExists p pfy pfx ||| The relation of greatest common divisor is symmetric. public export Symmetric Nat (GCD p) where symmetric {x = Z} {y = Z} (MkGCD _ _) impossible symmetric {x = S _} (MkGCD cf greatest) = MkGCD (symmetric {ty = Nat} cf) $ \q, cf => greatest q (symmetric {ty = Nat} cf) symmetric {y = S _} (MkGCD cf greatest) = MkGCD (symmetric {ty = Nat} cf) $ \q, cf => greatest q (symmetric {ty = Nat} cf) ||| If p is a common factor of a and b, then it is also a factor of their GCD. ||| This actually follows directly from the definition of GCD. export commonFactorAlsoFactorOfGCD : {p : Nat} -> Factor p a -> Factor p b -> GCD q a b -> Factor p q commonFactorAlsoFactorOfGCD pfa pfb (MkGCD _ greatest) = greatest p (CommonFactorExists p pfa pfb) ||| 1 is a common factor of any pair of natural numbers. export oneCommonFactor : (a, b : Nat) -> CommonFactor 1 a b oneCommonFactor a b = CommonFactorExists 1 (CofactorExists a (rewrite plusZeroRightNeutral a in Refl)) (CofactorExists b (rewrite plusZeroRightNeutral b in Refl)) ||| Any natural number is a common factor of itself and itself. export selfIsCommonFactor : (a : Nat) -> {auto ok : LTE 1 a} -> CommonFactor a a a selfIsCommonFactor a = let prf = reflexive {x = a} in CommonFactorExists a prf prf -- Some helpers for the gcd function. data Search : Type where SearchArgs : (a, b : Nat) -> LTE b a -> {auto bNonZero : LTE 1 b} -> Search left : Search -> Nat left (SearchArgs l _ _) = l right : Search -> Nat right (SearchArgs _ r _) = r Sized Search where size (SearchArgs a b _) = a + b notLteAndGt : (a, b : Nat) -> LTE a b -> Not (GT a b) notLteAndGt Z _ _ aGtB = succNotLTEzero aGtB notLteAndGt (S _) Z aLteB _ = succNotLTEzero aLteB notLteAndGt (S k) (S j) aLteB aGtB = notLteAndGt k j (fromLteSucc aLteB) (fromLteSucc aGtB) gcd_step : (x : Search) -> (rec : (y : Search) -> Smaller y x -> (f : Nat ** GCD f (left y) (right y))) -> (f : Nat ** GCD f (left x) (right x)) gcd_step (SearchArgs Z _ bLteA {bNonZero}) _ = absurd . succNotLTEzero $ transitive {ty = Nat} bNonZero bLteA gcd_step (SearchArgs _ Z _ {bNonZero}) _ = absurd $ succNotLTEzero bNonZero gcd_step (SearchArgs (S a) (S b) bLteA) rec = case divMod (S a) (S b) of Fraction (S a) (S b) q FZ prf => let sbIsFactor = rewrite multCommutative b q in rewrite sym $ multRightSuccPlus q b in replace {p = \x => S a = x} (plusZeroRightNeutral (q * S b)) $ sym prf skDividesA = CofactorExists q sbIsFactor skDividesB = reflexive {x = S b} in (S b ** MkGCD (CommonFactorExists (S b) skDividesA skDividesB) (\q', (CommonFactorExists q' _ qfb) => qfb)) Fraction (S a) (S b) q (FS r) prf => let rLtSb = lteSuccRight $ elemSmallerThanBound r _ = the (LTE 1 q) $ case q of Z => absurd . notLteAndGt (S $ finToNat r) b (elemSmallerThanBound r) $ replace {p = LTE (S b)} (sym prf) bLteA (S k) => LTESucc LTEZero (f ** MkGCD (CommonFactorExists f prfSb prfRem) greatestSbSr) = rec (SearchArgs (S b) (S $ finToNat r) rLtSb) $ rewrite plusCommutative a (S b) in LTESucc . LTESucc . plusLteLeft b . fromLteSucc $ transitive {rel = LTE} (elemSmallerThanBound $ FS r) bLteA prfSa = rewrite sym prf in rewrite multCommutative q (S b) in plusFactor (multNAlsoFactor prfSb q) prfRem greatest = the ((q' : Nat) -> CommonFactor q' (S a) (S b) -> Factor q' f) (\q', (CommonFactorExists q' qfa qfb) => let sbfqSb = rewrite multCommutative q (S b) in multFactor (S b) q rightPrf = minusFactor {a = q * S b} (rewrite prf in qfa) (transitive {ty = Nat} qfb sbfqSb) in greatestSbSr q' (CommonFactorExists q' qfb rightPrf) ) in (f ** MkGCD (CommonFactorExists f prfSa prfSb) greatest) ||| An implementation of Euclidean Algorithm for computing greatest common ||| divisors. It is proven correct and total; returns a proof that computed ||| number actually IS the GCD. Unfortunately it's very slow, so improvements ||| in terms of efficiency would be welcome. export gcd : (a, b : Nat) -> {auto ok : NotBothZero a b} -> (f : Nat ** GCD f a b) gcd Z Z impossible gcd Z b = (b ** MkGCD (CommonFactorExists b (anythingFactorZero b) (reflexive {x = b})) $ \q, (CommonFactorExists q _ prf) => prf ) gcd a Z = (a ** MkGCD (CommonFactorExists a (reflexive {x = a}) (anythingFactorZero a)) $ \q, (CommonFactorExists q prf _) => prf ) gcd (S a) (S b) with (cmp (S a) (S b)) gcd (S (b + S d)) (S b) | CmpGT d = sizeInd gcd_step $ SearchArgs (S (b + S d)) (S b) $ rewrite sym $ plusSuccRightSucc b d in LTESucc . lteSuccRight $ lteAddRight b gcd (S a) (S a) | CmpEQ = (S a ** MkGCD (selfIsCommonFactor (S a)) (\q, (CommonFactorExists q qfa _) => qfa)) gcd (S a) (S (a + S d)) | CmpLT d = let (f ** MkGCD prf greatest) = sizeInd gcd_step $ SearchArgs (S (a + S d)) (S a) $ rewrite sym $ plusSuccRightSucc a d in LTESucc . lteSuccRight $ lteAddRight a in (f ** MkGCD (symmetric {ty = Nat} prf) (\q, cf => greatest q $ symmetric {ty = Nat} cf)) ||| For every two natural numbers there is a unique greatest common divisor. export gcdUnique : GCD p a b -> GCD q a b -> p = q gcdUnique (MkGCD pCFab greatestP) (MkGCD qCFab greatestQ) = antisymmetric (greatestQ p pCFab) (greatestP q qCFab) divByGcdHelper : (a, b, c : Nat) -> GCD (S a) (S a * S b) (S a * c) -> GCD 1 (S b) c divByGcdHelper a b c (MkGCD _ greatest) = MkGCD (CommonFactorExists 1 (oneIsFactor (S b)) (oneIsFactor c)) $ \q, (CommonFactorExists q (CofactorExists qb prfQB) (CofactorExists qc prfQC)) => let qFab = CofactorExists qb $ rewrite multCommutative q (S a) in rewrite sym $ multAssociative (S a) q qb in rewrite sym $ prfQB in Refl qFac = CofactorExists qc $ rewrite multCommutative q (S a) in rewrite sym $ multAssociative (S a) q qc in rewrite sym $ prfQC in Refl CofactorExists f prfQAfA = greatest (q * S a) (CommonFactorExists (q * S a) qFab qFac) qf1 = multOneSoleNeutral a (f * q) $ rewrite multCommutative f q in rewrite multAssociative (S a) q f in rewrite sym $ multCommutative q (S a) in prfQAfA in CofactorExists f $ rewrite multCommutative q f in sym qf1 ||| For every two natural numbers, if we divide both of them by their GCD, ||| the GCD of resulting numbers will always be 1. export divByGcdGcdOne : {a, b, c : Nat} -> GCD a (a * b) (a * c) -> GCD 1 b c divByGcdGcdOne {a = Z} (MkGCD _ _) impossible divByGcdGcdOne {a = S a} {b = Z} {c = Z} (MkGCD {notBothZero} _ _) = case replace {p = \x => NotBothZero x x} (multZeroRightZero (S a)) notBothZero of LeftIsNotZero impossible RightIsNotZero impossible divByGcdGcdOne {a = S a} {b = Z} {c = S c} gcdPrf@(MkGCD {notBothZero} _ _) = case replace {p = \x => NotBothZero x (S a * S c)} (multZeroRightZero (S a)) notBothZero of LeftIsNotZero impossible RightIsNotZero => symmetric {ty = Nat} $ divByGcdHelper a c Z $ symmetric {ty = Nat} gcdPrf divByGcdGcdOne {a = S a} {b = S b} {c = Z} gcdPrf@(MkGCD {notBothZero} _ _) = case replace {p = \x => NotBothZero (S a * S b) x} (multZeroRightZero (S a)) notBothZero of RightIsNotZero impossible LeftIsNotZero => divByGcdHelper a b Z gcdPrf divByGcdGcdOne {a = S a} {b = S b} {c = S c} gcdPrf = divByGcdHelper a b (S c) gcdPrf