-- -- Specification -- -- a. Unsigned integers -- -- Unsigned integers with a precision of x bit have a valid -- range of [0,2^x - 1]. They support all the usual arithmetic -- operations: +,*,-,div, and mod. If the result y of an operation -- is outside the valid range, the unsigned remainder modulo 2^x of y -- is returned instead. The same kind of truncation happens when -- other numeric types are cast to one of the unsigned integer -- types. -- -- Example: For `Bits8` the valid range is [0,255]. Below are some -- example calculations. All numbers are considered to be of type `Bits8` -- unless specified otherwise: -- -- 255 + 7 = 6 -- 3 * 128 = 128 -- (-1) = 255 -- 7 - 10 = 253 -- -- b. Signed integers -- -- Signed integers with a precision of x bit have a valid -- range of [-2^(x-1),2^(x-1) - 1]. They support all the usual arithmetic -- operations: +,*,-,div, and mod. If the result `y` of an operation -- is outside the valid range, the signed remainder modulo 2^x of `y` -- is calculated and 2^x subtracted from the result if it -- is still out of bounds. The same kind of truncation happens when -- other numeric types are cast to one of the signed integer -- types. -- -- Example: For `Int8` the valid range is [-128,127]. Below are some -- example calculations. All numbers are considered to be of type `Int8` -- unless specified otherwise: -- -- 127 + 7 = -122 -- 3 * 64 = -64 -- 2 * (-64) = -128 -- (-129) = 127 -- 7 - 10 = -3 -- import Data.List import Data.Stream record IntType (a : Type) where constructor MkIntType name : String signed : Bool precision : Integer min : Integer max : Integer intType : Bool -> String -> Integer -> IntType a intType True n p = let ma = prim__shl_Integer 1 (p - 1) in MkIntType n True p (negate ma) (ma - 1) intType False n p = let ma = prim__shl_Integer 1 p in MkIntType n False p 0 (ma - 1) bits8 : IntType Bits8 bits8 = intType False "Bits8" 8 bits16 : IntType Bits16 bits16 = intType False "Bits16" 16 bits32 : IntType Bits32 bits32 = intType False "Bits32" 32 bits64 : IntType Bits64 bits64 = intType False "Bits64" 64 int8 : IntType Int8 int8 = intType True "Int8" 8 int16 : IntType Int16 int16 = intType True "Int16" 16 int32 : IntType Int32 int32 = intType True "Int32" 32 int64 : IntType Int64 int64 = intType True "Int64" 64 int : IntType Int int = intType True "Int" 64 record Op a where constructor MkOp name : String op : a -> a -> a opInt : Integer -> Integer -> Integer allowZero : Bool type : IntType a add : Num a => IntType a -> Op a add = MkOp "+" (+) (+) True sub : Neg a => IntType a -> Op a sub = MkOp "-" (-) (-) True mul : Num a => IntType a -> Op a mul = MkOp "*" (*) (*) True div : Integral a => IntType a -> Op a div = MkOp "div" (div) (div) False mod : Integral a => IntType a -> Op a mod = MkOp "mod" (mod) (mod) False pairs : List (Integer,Integer) pairs = let powsOf2 = [1,2,4,8,128,256,32768,65536,2147483648,4294967296,9223372036854775808,18446744073709551616] naturals = powsOf2 ++ map (\x => x-1) powsOf2 -- positive and negative versions of naturals ints = naturals ++ map negate naturals -- naturals paired with ints in [| (,) ints naturals |] -- This check does the following: For a given binary operation `op`, -- calculate the result of applying the operation to all passed pairs -- of integers in `pairs` and check, with the given bit size, if -- the result is out of bounds. If it is, calculate the result -- modulo 2^bits. This gives the reference result as an `Integer`. -- -- Now perform the same operation with the same input but for -- the integer type we'd like to check and cast the result back -- to an `Integer`. Create a nice error message for every pair -- that fails (returns an empty list if all goes well). check : (Num a, Cast a Integer) => Op a -> List String check (MkOp name op opInt allowZero $ MkIntType type signed bits mi ma) = let ps = if allowZero then pairs else filter ((0 /=) . checkBounds . snd) pairs in mapMaybe failing ps where trueMod : Integer -> Integer -> Integer trueMod x y = let res = x `mod` y in if res < 0 then res + y else res checkBounds : Integer -> Integer checkBounds n = let r1 = trueMod n (ma + 1 - mi) in if r1 > ma then r1 - (ma + 1 - mi) else r1 failing : (Integer,Integer) -> Maybe String failing (x,y) = let resInteger = opInt x y resMod = checkBounds $ opInt (checkBounds x) (checkBounds y) resA = cast {to = Integer} (op (fromInteger x) (fromInteger y)) in if resA == resMod then Nothing else Just #"Error when calculating \#{show x} \#{name} \#{show y} for \#{type}: Expected \#{show resMod} but got \#{show resA} (unrounded: \#{show resInteger})"# -------------------------------------------------------------------------------- -- Int8 -------------------------------------------------------------------------------- Show Int8 where show = prim__cast_Int8String Cast Int8 Integer where cast = prim__cast_Int8Integer Num Int8 where (+) = prim__add_Int8 (*) = prim__mul_Int8 fromInteger = prim__cast_IntegerInt8 Neg Int8 where (-) = prim__sub_Int8 negate = prim__sub_Int8 0 Integral Int8 where div = prim__div_Int8 mod = prim__mod_Int8 -------------------------------------------------------------------------------- -- Int16 -------------------------------------------------------------------------------- Show Int16 where show = prim__cast_Int16String Cast Int16 Integer where cast = prim__cast_Int16Integer Num Int16 where (+) = prim__add_Int16 (*) = prim__mul_Int16 fromInteger = prim__cast_IntegerInt16 Neg Int16 where (-) = prim__sub_Int16 negate = prim__sub_Int16 0 Integral Int16 where div = prim__div_Int16 mod = prim__mod_Int16 -------------------------------------------------------------------------------- -- Int32 -------------------------------------------------------------------------------- Show Int32 where show = prim__cast_Int32String Cast Int32 Integer where cast = prim__cast_Int32Integer Num Int32 where (+) = prim__add_Int32 (*) = prim__mul_Int32 fromInteger = prim__cast_IntegerInt32 Neg Int32 where (-) = prim__sub_Int32 negate = prim__sub_Int32 0 Integral Int32 where div = prim__div_Int32 mod = prim__mod_Int32 -------------------------------------------------------------------------------- -- Int64 -------------------------------------------------------------------------------- Show Int64 where show = prim__cast_Int64String Cast Int64 Integer where cast = prim__cast_Int64Integer Num Int64 where (+) = prim__add_Int64 (*) = prim__mul_Int64 fromInteger = prim__cast_IntegerInt64 Neg Int64 where (-) = prim__sub_Int64 negate = prim__sub_Int64 0 Integral Int64 where div = prim__div_Int64 mod = prim__mod_Int64 -------------------------------------------------------------------------------- -- Bits8 -------------------------------------------------------------------------------- Neg Bits8 where (-) = prim__sub_Bits8 negate = prim__sub_Bits8 0 Integral Bits8 where div = prim__div_Bits8 mod = prim__mod_Bits8 -------------------------------------------------------------------------------- -- Bits16 -------------------------------------------------------------------------------- Neg Bits16 where (-) = prim__sub_Bits16 negate = prim__sub_Bits16 0 Integral Bits16 where div = prim__div_Bits16 mod = prim__mod_Bits16 -------------------------------------------------------------------------------- -- Bits32 -------------------------------------------------------------------------------- Neg Bits32 where (-) = prim__sub_Bits32 negate = prim__sub_Bits32 0 Integral Bits32 where div = prim__div_Bits32 mod = prim__mod_Bits32 -------------------------------------------------------------------------------- -- Bits64 -------------------------------------------------------------------------------- Neg Bits64 where (-) = prim__sub_Bits64 negate = prim__sub_Bits64 0 Integral Bits64 where div = prim__div_Bits64 mod = prim__mod_Bits64 -------------------------------------------------------------------------------- -- Main -------------------------------------------------------------------------------- main : IO () main = do traverse_ putStrLn . check $ add int8 traverse_ putStrLn . check $ sub int8 traverse_ putStrLn . check $ mul int8 traverse_ putStrLn . check $ div int8 traverse_ putStrLn . check $ mod int8 traverse_ putStrLn . check $ add int16 traverse_ putStrLn . check $ sub int16 traverse_ putStrLn . check $ mul int16 traverse_ putStrLn . check $ div int16 traverse_ putStrLn . check $ mod int16 traverse_ putStrLn . check $ add int32 traverse_ putStrLn . check $ sub int32 traverse_ putStrLn . check $ mul int32 traverse_ putStrLn . check $ div int32 traverse_ putStrLn . check $ mod int32 traverse_ putStrLn . check $ add int64 traverse_ putStrLn . check $ sub int64 traverse_ putStrLn . check $ mul int64 traverse_ putStrLn . check $ div int64 traverse_ putStrLn . check $ mod int64 traverse_ putStrLn . check $ add int traverse_ putStrLn . check $ sub int traverse_ putStrLn . check $ mul int traverse_ putStrLn . check $ div int traverse_ putStrLn . check $ mod int traverse_ putStrLn . check $ add bits8 traverse_ putStrLn . check $ sub bits8 traverse_ putStrLn . check $ mul bits8 traverse_ putStrLn . check $ div bits8 traverse_ putStrLn . check $ mod bits8 traverse_ putStrLn . check $ add bits16 traverse_ putStrLn . check $ sub bits16 traverse_ putStrLn . check $ mul bits16 traverse_ putStrLn . check $ div bits16 traverse_ putStrLn . check $ mod bits16 traverse_ putStrLn . check $ add bits32 traverse_ putStrLn . check $ sub bits32 traverse_ putStrLn . check $ mul bits32 traverse_ putStrLn . check $ div bits32 traverse_ putStrLn . check $ mod bits32 traverse_ putStrLn . check $ add bits64 traverse_ putStrLn . check $ sub bits64 traverse_ putStrLn . check $ mul bits64 traverse_ putStrLn . check $ div bits64 traverse_ putStrLn . check $ mod bits64