module Control.WellFounded import Data.Nat import Data.List public export data Accessible : (rel : a -> a -> Type) -> (x : a) -> Type where Access : (rec : (y : a) -> rel y x -> Accessible rel y) -> Accessible rel x public export interface WellFounded (rel : a -> a -> Type) where wellFounded : (x : a) -> Accessible rel x export accRec : {0 rel : (arg1 : a) -> (arg2 : a) -> Type} -> (step : (x : a) -> ((y : a) -> rel y x -> b) -> b) -> (z : a) -> (0 acc : Accessible rel z) -> b accRec step z (Access f) = step z $ \yarg, lt => accRec step yarg (f yarg lt) export accInd : {0 rel : a -> a -> Type} -> {0 P : a -> Type} -> (step : (x : a) -> ((y : a) -> rel y x -> P y) -> P x) -> (z : a) -> (0 acc : Accessible rel z) -> P z accInd step z (Access f) = step z $ \y, lt => accInd step y (f y lt) export wfRec : WellFounded rel => (step : (x : a) -> ((y : a) -> rel y x -> b) -> b) -> a -> b wfRec step x = accRec step x (wellFounded {rel} x) export wfInd : WellFounded rel => {0 P : a -> Type} -> (step : (x : a) -> ((y : a) -> rel y x -> P y) -> P x) -> (myz : a) -> P myz wfInd step myz = accInd step myz (wellFounded {rel} myz) public export interface Sized a where size : a -> Nat public export Smaller : Sized a => a -> a -> Type Smaller x y = size x `LT` size y public export SizeAccessible : Sized a => a -> Type SizeAccessible = Accessible Smaller export sizeAccessible : Sized a => (x : a) -> SizeAccessible x sizeAccessible x = Access (acc $ size x) where acc : (sizeX : Nat) -> (y : a) -> (size y `LT` sizeX) -> SizeAccessible y acc (S x') y (LTESucc yLEx') = Access (\z, zLTy => acc x' z (lteTransitive zLTy yLEx')) export sizeInd : Sized a => {0 P : a -> Type} -> (step : (x : a) -> ((y : a) -> Smaller y x -> P y) -> P x) -> (z : a) -> P z sizeInd step z = accInd step z (sizeAccessible z) export sizeRec : Sized a => (step : (x : a) -> ((y : a) -> Smaller y x -> b) -> b) -> (z : a) -> b sizeRec step z = accRec step z (sizeAccessible z) export implementation Sized Nat where size = \x => x export implementation Sized (List a) where size = length export implementation (Sized a, Sized b) => Sized (Pair a b) where size (x,y) = size x + size y