||| Implementation of ordering relations for `Fin`ite numbers module Data.Fin.Order import Data.Fin import Data.Fun import Data.Rel import Data.Nat import Data.Nat.Order import Decidable.Decidable import Decidable.Order using (k : Nat) data FinLTE : Fin k -> Fin k -> Type where FromNatPrf : {m, n : Fin k} -> LTE (finToNat m) (finToNat n) -> FinLTE m n implementation Preorder (Fin k) FinLTE where transitive m n o (FromNatPrf p1) (FromNatPrf p2) = FromNatPrf (LTEIsTransitive (finToNat m) (finToNat n) (finToNat o) p1 p2) reflexive n = FromNatPrf (LTEIsReflexive (finToNat n)) implementation Poset (Fin k) FinLTE where antisymmetric m n (FromNatPrf p1) (FromNatPrf p2) = finToNatInjective m n (LTEIsAntisymmetric (finToNat m) (finToNat n) p1 p2) implementation Decidable 2 [Fin k, Fin k] FinLTE where decide m n with (decideLTE (finToNat m) (finToNat n)) decide m n | Yes prf = Yes (FromNatPrf prf) decide m n | No disprf = No (\ (FromNatPrf prf) => disprf prf) implementation Ordered (Fin k) FinLTE where order m n = either (Left . FromNatPrf) (Right . FromNatPrf) (order (finToNat m) (finToNat n))