||| Until Idris2 starts supporting the 'syntax' keyword, here's a ||| poor-man's equational reasoning module Syntax.PreorderReasoning infixl 0 ~~,~= prefix 1 |~ infix 1 ...,..<,..>,.=.,.=<,.=> |||Slightly nicer syntax for justifying equations: |||``` ||| |~ a ||| ~~ b ...( justification ) |||``` |||and we can think of the `...( justification )` as ASCII art for a thought bubble. public export data Step : a -> b -> Type where (...) : (0 y : a) -> (0 step : x ~=~ y) -> Step x y public export data FastDerivation : (x : a) -> (y : b) -> Type where (|~) : (0 x : a) -> FastDerivation x x (~~) : FastDerivation x y -> (step : Step y z) -> FastDerivation x z public export Calc : {0 x : a} -> {0 y : b} -> (0 der : FastDerivation x y) -> x ~=~ y Calc der = irrelevantEq $ Calc' der where Calc' : {0 x : c} -> {0 y : d} -> FastDerivation x y -> x ~=~ y Calc' (|~ x) = Refl Calc' ((~~) der (_ ...(Refl))) = Calc' der {- -- requires import Data.Nat 0 example : (x : Nat) -> (x + 1) + 0 = 1 + x example x = Calc $ |~ (x + 1) + 0 ~~ x+1 ...( plusZeroRightNeutral $ x + 1 ) ~~ 1+x ...( plusCommutative x 1 ) -} -- Smart constructors public export (..<) : (0 y : a) -> {0 x : b} -> (0 step : y ~=~ x) -> Step x y (y ..<(prf)) {x} = (y ...(sym prf)) public export (..>) : (0 y : a) -> (0 step : x ~=~ y) -> Step x y (..>) = (...) ||| Use a judgemental equality but is not trivial to the reader. public export (~=) : FastDerivation x y -> (0 z : dom) -> {auto 0 xEqy : y = z} -> FastDerivation x z (~=) der y {xEqy = Refl} = der ~~ y ... Refl