mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-25 20:51:43 +03:00
04a0f5001f
We've always just used 0, which isn't correct if the function is going to be used in a runtime pattern match. Now calculate correctly so that we're explicit about which type level variables are used at runtime. This might cause some programs to fail to compile, if they use functions that calculate Pi types. The solution is to make those functions explicitly 0 multiplicity. If that doesn't work, you may have been accidentally trying to use compile-time only data at run time! Fixes #1163
138 lines
4.8 KiB
Idris
138 lines
4.8 KiB
Idris
import Syntax.PreorderReasoning
|
|
|
|
-------- some notation ----------
|
|
infixr 6 .+.,:+:
|
|
infixr 7 .*.,:*:
|
|
|
|
interface Additive a where
|
|
constructor MkAdditive
|
|
(.+.) : a -> a -> a
|
|
O : a
|
|
|
|
interface Additive2 a where
|
|
constructor MkAdditive2
|
|
(:+:) : a -> a -> a
|
|
O2 : a
|
|
|
|
interface Multiplicative a where
|
|
constructor MkMultiplicative
|
|
(.*.) : a -> a -> a
|
|
I : a
|
|
|
|
record MonoidOver U where
|
|
constructor WithStruct
|
|
Unit : U
|
|
Mult : U -> U -> U
|
|
lftUnit : (x : U) -> Unit `Mult` x = x
|
|
rgtUnit : (x : U) -> x `Mult` Unit = x
|
|
assoc : (x,y,z : U)
|
|
-> x `Mult` (y `Mult` z) = (x `Mult` y) `Mult` z
|
|
|
|
record Monoid where
|
|
constructor MkMonoid
|
|
U : Type
|
|
Struct : MonoidOver U
|
|
|
|
AdditiveStruct : (m : MonoidOver a) -> Additive a
|
|
AdditiveStruct m = MkAdditive (Mult $ m)
|
|
(Unit $ m)
|
|
AdditiveStruct2 : (m : MonoidOver a) -> Additive2 a
|
|
AdditiveStruct2 m = MkAdditive2 (Mult $ m)
|
|
(Unit $ m)
|
|
AdditiveStructs : (ma : MonoidOver a) -> (mb : MonoidOver b)
|
|
-> (Additive a, Additive2 b)
|
|
AdditiveStructs ma mb = (AdditiveStruct ma, AdditiveStruct2 mb)
|
|
|
|
getAdditive : (m : Monoid) -> Additive (U m)
|
|
getAdditive m = AdditiveStruct (Struct m)
|
|
|
|
MultiplicativeStruct : (m : Monoid) -> Multiplicative (U m)
|
|
MultiplicativeStruct m = MkMultiplicative (Mult $ Struct m)
|
|
(Unit $ Struct m)
|
|
-----------------------------------------------------
|
|
|
|
0 Commutative : MonoidOver a -> Type
|
|
Commutative m = (x,y : a) -> let _ = AdditiveStruct m in
|
|
x .+. y = y .+. x
|
|
|
|
0 Commute : (Additive a, Additive2 a) => Type
|
|
Commute =
|
|
(x11,x12,x21,x22 : a) ->
|
|
((x11 :+: x12) .+. (x21 :+: x22))
|
|
=
|
|
((x11 .+. x21) :+: (x12 .+. x22))
|
|
|
|
product : (ma, mb : Monoid) -> Monoid
|
|
product ma mb =
|
|
let
|
|
%hint aStruct : Additive (U ma)
|
|
aStruct = getAdditive ma
|
|
%hint bStruct : Additive (U mb)
|
|
bStruct = getAdditive mb
|
|
|
|
in MkMonoid (U ma, U mb) $ WithStruct
|
|
(O, O)
|
|
(\(x1,y1), (x2, y2) => (x1 .+. x2, y1 .+. y2))
|
|
(\(x,y) => rewrite lftUnit (Struct ma) x in
|
|
rewrite lftUnit (Struct mb) y in
|
|
Refl)
|
|
(\(x,y) => rewrite rgtUnit (Struct ma) x in
|
|
rewrite rgtUnit (Struct mb) y in
|
|
Refl)
|
|
(\(x1,y1),(x2,y2),(x3,y3) =>
|
|
rewrite assoc (Struct ma) x1 x2 x3 in
|
|
rewrite assoc (Struct mb) y1 y2 y3 in
|
|
Refl)
|
|
|
|
EckmannHilton : forall a . (ma,mb : MonoidOver a)
|
|
-> let ops = AdditiveStructs ma mb in
|
|
Commute @{ops}
|
|
-> (Commutative ma, (x,y : a) -> x .+. y = x :+: y)
|
|
EckmannHilton ma mb prf =
|
|
let %hint first : Additive a
|
|
first = AdditiveStruct ma
|
|
%hint second : Additive2 a
|
|
second = AdditiveStruct2 mb in
|
|
let SameUnits : (the a O === O2)
|
|
SameUnits = Calc $
|
|
|~ O
|
|
~~ O .+. O ...(sym $ lftUnit ma O)
|
|
~~ (O :+: O2) .+. (O2 :+: O) ...(sym $ cong2 (.+.)
|
|
(rgtUnit mb O)
|
|
(lftUnit mb O))
|
|
~~ (O .+. O2) :+: (O2 .+. O) ...(prf O O2 O2 O)
|
|
~~ O2 :+: O2 ...(cong2 (:+:)
|
|
(lftUnit ma O2)
|
|
(rgtUnit ma O2))
|
|
~~ O2 ...(lftUnit mb O2)
|
|
|
|
SameMults : (x,y : a) -> (x .+. y) === (x :+: y)
|
|
SameMults x y = Calc $
|
|
|~ x .+. y
|
|
~~ (x :+: O2) .+. (O2 :+: y) ...(sym $ cong2 (.+.)
|
|
(rgtUnit mb x)
|
|
(lftUnit mb y))
|
|
~~ (x .+. O2) :+: (O2 .+. y) ...(prf x O2 O2 y)
|
|
~~ (x .+. O ) :+: (O .+. y) ...(cong (\u =>
|
|
(x .+. u) :+: (u .+. y))
|
|
(sym SameUnits))
|
|
~~ x :+: y ...(cong2 (:+:)
|
|
(rgtUnit ma x)
|
|
(lftUnit ma y))
|
|
|
|
Commutativity : Commutative ma
|
|
Commutativity x y = Calc $
|
|
|~ x .+. y
|
|
~~ (O2 :+: x) .+. (y :+: O2) ...(sym $ cong2 (.+.)
|
|
(lftUnit mb x)
|
|
(rgtUnit mb y))
|
|
~~ (O2 .+. y) :+: (x .+. O2) ...(prf O2 x y O2)
|
|
~~ (O .+. y) :+: (x .+. O ) ...(cong (\u =>
|
|
(u .+. y) :+: (x .+. u))
|
|
(sym SameUnits))
|
|
~~ y :+: x ...(cong2 (:+:)
|
|
(lftUnit ma y)
|
|
(rgtUnit ma x))
|
|
~~ y .+. x ...(sym $ SameMults y x)
|
|
in (Commutativity, SameMults)
|