mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-22 03:01:31 +03:00
37 lines
1.3 KiB
Idris
37 lines
1.3 KiB
Idris
module Decidable.Equality.Core
|
|
|
|
%default total
|
|
|
|
--------------------------------------------------------------------------------
|
|
-- Decidable equality
|
|
--------------------------------------------------------------------------------
|
|
|
|
||| Decision procedures for propositional equality
|
|
public export
|
|
interface DecEq t where
|
|
||| Decide whether two elements of `t` are propositionally equal
|
|
decEq : (x1 : t) -> (x2 : t) -> Dec (x1 = x2)
|
|
|
|
--------------------------------------------------------------------------------
|
|
-- Utility lemmas
|
|
--------------------------------------------------------------------------------
|
|
|
|
||| The negation of equality is symmetric (follows from symmetry of equality)
|
|
export
|
|
negEqSym : forall a, b . (a = b -> Void) -> (b = a -> Void)
|
|
negEqSym p h = p (sym h)
|
|
|
|
||| Everything is decidably equal to itself
|
|
export
|
|
decEqSelfIsYes : DecEq a => {x : a} -> decEq x x = Yes Refl
|
|
decEqSelfIsYes {x} with (decEq x x)
|
|
decEqSelfIsYes {x} | Yes Refl = Refl
|
|
decEqSelfIsYes {x} | No contra = absurd $ contra Refl
|
|
|
|
||| If you have a proof of inequality, you're sure that `decEq` would give a `No`.
|
|
export
|
|
decEqContraIsNo : DecEq a => {x, y : a} -> Not (x = y) -> (p ** decEq x y = No p)
|
|
decEqContraIsNo uxy with (decEq x y)
|
|
decEqContraIsNo uxy | Yes xy = absurd $ uxy xy
|
|
decEqContraIsNo _ | No uxy = (uxy ** Refl)
|