Idris2/libs/contrib/Data/SortedMap/Dependent.idr

426 lines
14 KiB
Idris

module Data.SortedMap.Dependent
import Data.DPair
import Decidable.Equality
-- TODO: write split
-------------------------------
--- Internal representation ---
-------------------------------
private
data Tree : Nat -> (k : Type) -> (v : k -> Type) -> Ord k -> Type where
Leaf : (x : k) -> v x -> Tree Z k v o
Branch2 : Tree n k v o -> k -> Tree n k v o -> Tree (S n) k v o
Branch3 : Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> Tree (S n) k v o
branch4 :
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o ->
Tree (S (S n)) k v o
branch4 a b c d e f g =
Branch2 (Branch2 a b c) d (Branch2 e f g)
branch5 :
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o ->
Tree (S (S n)) k v o
branch5 a b c d e f g h i =
Branch2 (Branch2 a b c) d (Branch3 e f g h i)
branch6 :
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o ->
Tree (S (S n)) k v o
branch6 a b c d e f g h i j k =
Branch3 (Branch2 a b c) d (Branch2 e f g) h (Branch2 i j k)
branch7 :
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o -> k ->
Tree n k v o ->
Tree (S (S n)) k v o
branch7 a b c d e f g h i j k l m =
Branch3 (Branch3 a b c d e) f (Branch2 g h i) j (Branch2 k l m)
merge1 : Tree n k v o -> k -> Tree (S n) k v o -> k -> Tree (S n) k v o -> Tree (S (S n)) k v o
merge1 a b (Branch2 c d e) f (Branch2 g h i) = branch5 a b c d e f g h i
merge1 a b (Branch2 c d e) f (Branch3 g h i j k) = branch6 a b c d e f g h i j k
merge1 a b (Branch3 c d e f g) h (Branch2 i j k) = branch6 a b c d e f g h i j k
merge1 a b (Branch3 c d e f g) h (Branch3 i j k l m) = branch7 a b c d e f g h i j k l m
merge2 : Tree (S n) k v o -> k -> Tree n k v o -> k -> Tree (S n) k v o -> Tree (S (S n)) k v o
merge2 (Branch2 a b c) d e f (Branch2 g h i) = branch5 a b c d e f g h i
merge2 (Branch2 a b c) d e f (Branch3 g h i j k) = branch6 a b c d e f g h i j k
merge2 (Branch3 a b c d e) f g h (Branch2 i j k) = branch6 a b c d e f g h i j k
merge2 (Branch3 a b c d e) f g h (Branch3 i j k l m) = branch7 a b c d e f g h i j k l m
merge3 : Tree (S n) k v o -> k -> Tree (S n) k v o -> k -> Tree n k v o -> Tree (S (S n)) k v o
merge3 (Branch2 a b c) d (Branch2 e f g) h i = branch5 a b c d e f g h i
merge3 (Branch2 a b c) d (Branch3 e f g h i) j k = branch6 a b c d e f g h i j k
merge3 (Branch3 a b c d e) f (Branch2 g h i) j k = branch6 a b c d e f g h i j k
merge3 (Branch3 a b c d e) f (Branch3 g h i j k) l m = branch7 a b c d e f g h i j k l m
treeLookup : Ord k => (x : k) -> Tree n k v o -> Maybe (y : k ** v y) -- may also return an erased `So (x == y)`
treeLookup k (Leaf k' v) =
if k == k' then
Just (k' ** v)
else
Nothing
treeLookup k (Branch2 t1 k' t2) =
if k <= k' then
treeLookup k t1
else
treeLookup k t2
treeLookup k (Branch3 t1 k1 t2 k2 t3) =
if k <= k1 then
treeLookup k t1
else if k <= k2 then
treeLookup k t2
else
treeLookup k t3
treeInsert' : Ord k => (x : k) -> v x -> Tree n k v o -> Either (Tree n k v o) (Tree n k v o, k, Tree n k v o)
treeInsert' k v (Leaf k' v') =
case compare k k' of
LT => Right (Leaf k v, k, Leaf k' v')
EQ => Left (Leaf k v)
GT => Right (Leaf k' v', k', Leaf k v)
treeInsert' k v (Branch2 t1 k' t2) =
if k <= k' then
case treeInsert' k v t1 of
Left t1' => Left (Branch2 t1' k' t2)
Right (a, b, c) => Left (Branch3 a b c k' t2)
else
case treeInsert' k v t2 of
Left t2' => Left (Branch2 t1 k' t2')
Right (a, b, c) => Left (Branch3 t1 k' a b c)
treeInsert' k v (Branch3 t1 k1 t2 k2 t3) =
if k <= k1 then
case treeInsert' k v t1 of
Left t1' => Left (Branch3 t1' k1 t2 k2 t3)
Right (a, b, c) => Right (Branch2 a b c, k1, Branch2 t2 k2 t3)
else
if k <= k2 then
case treeInsert' k v t2 of
Left t2' => Left (Branch3 t1 k1 t2' k2 t3)
Right (a, b, c) => Right (Branch2 t1 k1 a, b, Branch2 c k2 t3)
else
case treeInsert' k v t3 of
Left t3' => Left (Branch3 t1 k1 t2 k2 t3')
Right (a, b, c) => Right (Branch2 t1 k1 t2, k2, Branch2 a b c)
treeInsert : Ord k => (x : k) -> v x -> Tree n k v o -> Either (Tree n k v o) (Tree (S n) k v o)
treeInsert k v t =
case treeInsert' k v t of
Left t' => Left t'
Right (a, b, c) => Right (Branch2 a b c)
delType : Nat -> (k : Type) -> (v : k -> Type) -> Ord k -> Type
delType Z k v o = ()
delType (S n) k v o = Tree n k v o
treeDelete : Ord k => (n : Nat) -> k -> Tree n k v o -> Either (Tree n k v o) (delType n k v o)
treeDelete _ k (Leaf k' v) =
if k == k' then
Right ()
else
Left (Leaf k' v)
treeDelete (S Z) k (Branch2 t1 k' t2) =
if k <= k' then
case treeDelete Z k t1 of
Left t1' => Left (Branch2 t1' k' t2)
Right () => Right t2
else
case treeDelete Z k t2 of
Left t2' => Left (Branch2 t1 k' t2')
Right () => Right t1
treeDelete (S Z) k (Branch3 t1 k1 t2 k2 t3) =
if k <= k1 then
case treeDelete Z k t1 of
Left t1' => Left (Branch3 t1' k1 t2 k2 t3)
Right () => Left (Branch2 t2 k2 t3)
else if k <= k2 then
case treeDelete Z k t2 of
Left t2' => Left (Branch3 t1 k1 t2' k2 t3)
Right () => Left (Branch2 t1 k1 t3)
else
case treeDelete Z k t3 of
Left t3' => Left (Branch3 t1 k1 t2 k2 t3')
Right () => Left (Branch2 t1 k1 t2)
treeDelete (S (S n)) k (Branch2 t1 k' t2) =
if k <= k' then
case treeDelete (S n) k t1 of
Left t1' => Left (Branch2 t1' k' t2)
Right t1' =>
case t2 of
Branch2 a b c => Right (Branch3 t1' k' a b c)
Branch3 a b c d e => Left (branch4 t1' k' a b c d e)
else
case treeDelete (S n) k t2 of
Left t2' => Left (Branch2 t1 k' t2')
Right t2' =>
case t1 of
Branch2 a b c => Right (Branch3 a b c k' t2')
Branch3 a b c d e => Left (branch4 a b c d e k' t2')
treeDelete (S (S n)) k (Branch3 t1 k1 t2 k2 t3) =
if k <= k1 then
case treeDelete (S n) k t1 of
Left t1' => Left (Branch3 t1' k1 t2 k2 t3)
Right t1' => Left (merge1 t1' k1 t2 k2 t3)
else if k <= k2 then
case treeDelete (S n) k t2 of
Left t2' => Left (Branch3 t1 k1 t2' k2 t3)
Right t2' => Left (merge2 t1 k1 t2' k2 t3)
else
case treeDelete (S n) k t3 of
Left t3' => Left (Branch3 t1 k1 t2 k2 t3')
Right t3' => Left (merge3 t1 k1 t2 k2 t3')
treeToList : Tree n k v o -> List (x : k ** v x)
treeToList = treeToList' (:: [])
where
-- explicit quantification to avoid conflation with {n} from treeToList
treeToList' : {0 n : Nat} -> ((x : k ** v x) -> List (x : k ** v x)) -> Tree n k v o -> List (x : k ** v x)
treeToList' cont (Leaf k v) = cont (k ** v)
treeToList' cont (Branch2 t1 _ t2) = treeToList' (:: treeToList' cont t2) t1
treeToList' cont (Branch3 t1 _ t2 _ t3) = treeToList' (:: treeToList' (:: treeToList' cont t3) t2) t1
----------------------
--- User interface ---
----------------------
export
data SortedDMap : (k : Type) -> (v : k -> Type) -> Type where
Empty : Ord k => SortedDMap k v
M : (o : Ord k) => (n : Nat) -> Tree n k v o -> SortedDMap k v
export
empty : Ord k => SortedDMap k v
empty = Empty
export
lookup : (x : k) -> SortedDMap k v -> Maybe (y : k ** v y) -- could return also `So (x == y)`
lookup _ Empty = Nothing
lookup k (M _ t) = treeLookup k t
export
lookupPrecise : DecEq k => (x : k) -> SortedDMap k v -> Maybe (v x)
lookupPrecise x = lookup x >=> \(y ** v) =>
case decEq x y of
Yes Refl => Just v
No _ => Nothing
export
insert : (x : k) -> v x -> SortedDMap k v -> SortedDMap k v
insert k v Empty = M Z (Leaf k v)
insert k v (M _ t) =
case treeInsert k v t of
Left t' => (M _ t')
Right t' => (M _ t')
export
singleton : Ord k => (x : k) -> v x -> SortedDMap k v
singleton k v = insert k v empty
export
insertFrom : Foldable f => f (x : k ** v x) -> SortedDMap k v -> SortedDMap k v
insertFrom = flip $ foldl $ flip $ uncurry insert
export
delete : k -> SortedDMap k v -> SortedDMap k v
delete _ Empty = Empty
delete k (M Z t) =
case treeDelete Z k t of
Left t' => (M _ t')
Right () => Empty
delete k (M (S n) t) =
case treeDelete (S n) k t of
Left t' => (M _ t')
Right t' => (M _ t')
export
fromList : Ord k => List (x : k ** v x) -> SortedDMap k v
fromList = foldl (flip (uncurry insert)) empty
export
toList : SortedDMap k v -> List (x : k ** v x)
toList Empty = []
toList (M _ t) = treeToList t
||| Gets the keys of the map.
export
keys : SortedDMap k v -> List k
keys = map fst . toList
export
values : SortedDMap k v -> List (x : k ** v x)
values = toList
treeMap : ({x : k} -> a x -> b x) -> Tree n k a o -> Tree n k b o
treeMap f (Leaf k v) = Leaf k (f v)
treeMap f (Branch2 t1 k t2) = Branch2 (treeMap f t1) k (treeMap f t2)
treeMap f (Branch3 t1 k1 t2 k2 t3)
= Branch3 (treeMap f t1) k1 (treeMap f t2) k2 (treeMap f t3)
treeTraverse : Applicative f => ({x : k} -> a x -> f (b x)) -> Tree n k a o -> f (Tree n k b o)
treeTraverse f (Leaf k v) = Leaf k <$> f v
treeTraverse f (Branch2 t1 k t2) =
Branch2
<$> treeTraverse f t1
<*> pure k
<*> treeTraverse f t2
treeTraverse f (Branch3 t1 k1 t2 k2 t3) =
Branch3
<$> treeTraverse f t1
<*> pure k1
<*> treeTraverse f t2
<*> pure k2
<*> treeTraverse f t3
export
map : ({x : k} -> v x -> w x) -> SortedDMap k v -> SortedDMap k w
map _ Empty = Empty
map f (M _ t) = M _ $ treeMap f t
export
foldl : (acc -> (x : k ** v x) -> acc) -> acc -> SortedDMap k v -> acc
foldl f i = foldl f i . values
export
foldr : ((x : k ** v x) -> acc -> acc) -> acc -> SortedDMap k v -> acc
foldr f i = foldr f i . values
export
foldlM : Monad m => (acc -> (x : k ** v x) -> m acc) -> acc -> SortedDMap k v -> m acc
foldlM f i = foldl (\ma, b => ma >>= flip f b) (pure i)
export
foldMap : Monoid m => (f : (x : k) -> v x -> m) -> SortedDMap k v -> m
foldMap f = foldr ((<+>) . uncurry f) neutral
export
null : SortedDMap k v -> Bool
null Empty = True
null (M _ _) = False
export
traverse : Applicative f => ({x : k} -> v x -> f (w x)) -> SortedDMap k v -> f (SortedDMap k w)
traverse _ Empty = pure Empty
traverse f (M _ t) = M _ <$> treeTraverse f t
||| Merge two maps. When encountering duplicate keys, using a function to combine the values.
||| Uses the ordering of the first map given.
export
mergeWith : DecEq k => ({x : k} -> v x -> v x -> v x) -> SortedDMap k v -> SortedDMap k v -> SortedDMap k v
mergeWith f x y = insertFrom inserted x where
inserted : List (x : k ** v x)
inserted = do
(k ** v) <- toList y
let v' = (maybe id f $ lookupPrecise k x) v
pure (k ** v')
||| Merge two maps using the Semigroup (and by extension, Monoid) operation.
||| Uses mergeWith internally, so the ordering of the left map is kept.
export
merge : DecEq k => ({x : k} -> Semigroup (v x)) => SortedDMap k v -> SortedDMap k v -> SortedDMap k v
merge = mergeWith (<+>)
||| Left-biased merge, also keeps the ordering specified by the left map.
export
mergeLeft : DecEq k => SortedDMap k v -> SortedDMap k v -> SortedDMap k v
mergeLeft = mergeWith const
treeLeftMost : Tree n k v o -> (x : k ** v x)
treeLeftMost (Leaf x y) = (x ** y)
treeLeftMost (Branch2 x _ _) = treeLeftMost x
treeLeftMost (Branch3 x _ _ _ _) = treeLeftMost x
treeRightMost : Tree n k v o -> (x : k ** v x)
treeRightMost (Leaf x y) = (x ** y)
treeRightMost (Branch2 _ _ x) = treeRightMost x
treeRightMost (Branch3 _ _ _ _ x) = treeRightMost x
treeLookupBetween : Ord k => k -> Tree n k v o -> (Maybe (x : k ** v x), Maybe (x : k ** v x))
treeLookupBetween k (Leaf k' v) with (k < k')
treeLookupBetween k (Leaf k' v) | True = (Nothing, Just (k' ** v))
treeLookupBetween k (Leaf k' v) | False = (Just (k' ** v), Nothing)
treeLookupBetween k (Branch2 t1 k' t2) with (k < k')
treeLookupBetween k (Branch2 t1 k' t2) | True = -- k < k'
let (lower, upper) = treeLookupBetween k t1 in
(lower, upper <|> pure (treeLeftMost t2))
treeLookupBetween k (Branch2 t1 k' t2) | False = -- k >= k'
let (lower, upper) = treeLookupBetween k t2 in
(lower <|> pure (treeRightMost t1), upper)
treeLookupBetween k (Branch3 t1 k1 t2 k2 t3) with (k < k1)
treeLookupBetween k (Branch3 t1 k1 t2 k2 t3) | True = treeLookupBetween k (Branch2 t1 k1 t2)
treeLookupBetween k (Branch3 t1 k1 t2 k2 t3) | False with (k < k2)
treeLookupBetween k (Branch3 t1 k1 t2 k2 t3) | False | False = treeLookupBetween k (Branch2 t2 k2 t3)
treeLookupBetween k (Branch3 t1 k1 t2 k2 t3) | False | True = --k1 <= k < k2
let (lower, upper) = treeLookupBetween k (Branch2 t1 k1 t2) in
(lower, upper <|> pure (treeLeftMost t3))
||| looks up a key in map, returning the left and right closest values, so that
||| k1 <= k < k2. If at the end of the beginning and/or end of the sorted map, returns
||| nothing appropriately
export
lookupBetween : k -> SortedDMap k v -> (Maybe (x : k ** v x), Maybe (x : k ** v x))
lookupBetween k Empty = (Nothing, Nothing)
lookupBetween k (M _ t) = treeLookupBetween k t
||| Returns the leftmost (least) key and value
export
leftMost : SortedDMap k v -> Maybe (x : k ** v x)
leftMost Empty = Nothing
leftMost (M _ t) = Just $ treeLeftMost t
||| Returns the rightmost (greatest) key and value
export
rightMost : SortedDMap k v -> Maybe (x : k ** v x)
rightMost Empty = Nothing
rightMost (M _ t) = Just $ treeRightMost t
export
(Show k, {x : k} -> Show (v x)) => Show (SortedDMap k v) where
show m = "fromList " ++ (show $ toList m)
export
(DecEq k, {x : k} -> Eq (v x)) => Eq (SortedDMap k v) where
(==) = (==) `on` toList
export
strictSubmap : DecEq k => ({x : k} -> Eq (v x)) => (sub : SortedDMap k v) -> (sup : SortedDMap k v) -> Bool
strictSubmap sub sup = all (\(k ** v) => Just v == lookupPrecise k sup) $ toList sub
-- TODO: is this the right variant of merge to use for this? I think it is, but
-- I could also see the advantages of using `mergeLeft`. The current approach is
-- strictly more powerful I believe, because `mergeLeft` can be emulated with
-- the `First` monoid. However, this does require more code to do the same
-- thing.
export
DecEq k => ({x : k} -> Semigroup (v x)) => Semigroup (SortedDMap k v) where
(<+>) = merge
||| For `neutral <+> y`, y is rebuilt in `Ord k`, so this is not a "strict" Monoid.
||| However, semantically, it should be equal.
export
DecEq k => Ord k => ({x : k} -> Semigroup (v x)) => Monoid (SortedDMap k v) where
neutral = empty