Idris2/support/chez/support.ss
Edwin Brady 1b6cc3ba1b More Scheme readback machinery
We need these things in the next version so that the next-but-one
version can have a scheme evaluator!
2021-08-05 17:01:53 +01:00

563 lines
16 KiB
Scheme

(define (blodwen-os)
(case (machine-type)
[(i3le ti3le a6le ta6le) "unix"] ; GNU/Linux
[(i3ob ti3ob a6ob ta6ob) "unix"] ; OpenBSD
[(i3fb ti3fb a6fb ta6fb) "unix"] ; FreeBSD
[(i3nb ti3nb a6nb ta6nb) "unix"] ; NetBSD
[(i3osx ti3osx a6osx ta6osx) "darwin"]
[(i3nt ti3nt a6nt ta6nt) "windows"]
[else "unknown"]))
(define blodwen-toSignedInt
(lambda (x bits)
(if (logbit? bits x)
(logor x (ash (- 1) bits))
(logand x (- (ash 1 bits) 1)))))
(define blodwen-toUnsignedInt
(lambda (x bits)
(modulo x (ash 1 bits))))
(define bu+ (lambda (x y bits) (blodwen-toUnsignedInt (+ x y) bits)))
(define bu- (lambda (x y bits) (blodwen-toUnsignedInt (- x y) bits)))
(define bu* (lambda (x y bits) (blodwen-toUnsignedInt (* x y) bits)))
(define bu/ (lambda (x y bits) (blodwen-toUnsignedInt (quotient x y) bits)))
(define bs+ (lambda (x y bits) (blodwen-toSignedInt (+ x y) bits)))
(define bs- (lambda (x y bits) (blodwen-toSignedInt (- x y) bits)))
(define bs* (lambda (x y bits) (blodwen-toSignedInt (* x y) bits)))
(define bs/ (lambda (x y bits) (blodwen-toSignedInt (quotient x y) bits)))
(define b+ (lambda (x y bits) (remainder (+ x y) (ash 1 bits))))
(define b- (lambda (x y bits) (remainder (- x y) (ash 1 bits))))
(define b* (lambda (x y bits) (remainder (* x y) (ash 1 bits))))
(define b/ (lambda (x y bits) (remainder (exact-floor (/ x y)) (ash 1 bits))))
(define integer->bits8 (lambda (x) (modulo x (expt 2 8))))
(define integer->bits16 (lambda (x) (modulo x (expt 2 16))))
(define integer->bits32 (lambda (x) (modulo x (expt 2 32))))
(define integer->bits64 (lambda (x) (modulo x (expt 2 64))))
(define bits16->bits8 (lambda (x) (modulo x (expt 2 8))))
(define bits32->bits8 (lambda (x) (modulo x (expt 2 8))))
(define bits32->bits16 (lambda (x) (modulo x (expt 2 16))))
(define bits64->bits8 (lambda (x) (modulo x (expt 2 8))))
(define bits64->bits16 (lambda (x) (modulo x (expt 2 16))))
(define bits64->bits32 (lambda (x) (modulo x (expt 2 32))))
(define blodwen-bits-shl-signed (lambda (x y bits) (blodwen-toSignedInt (ash x y) bits)))
(define blodwen-bits-shl (lambda (x y bits) (remainder (ash x y) (ash 1 bits))))
(define blodwen-shl (lambda (x y) (ash x y)))
(define blodwen-shr (lambda (x y) (ash x (- y))))
(define blodwen-and (lambda (x y) (logand x y)))
(define blodwen-or (lambda (x y) (logor x y)))
(define blodwen-xor (lambda (x y) (logxor x y)))
(define cast-num
(lambda (x)
(if (number? x) x 0)))
(define destroy-prefix
(lambda (x)
(cond
((equal? x "") "")
((equal? (string-ref x 0) #\#) "")
(else x))))
(define exact-floor
(lambda (x)
(inexact->exact (floor x))))
(define exact-truncate
(lambda (x)
(inexact->exact (truncate x))))
(define exact-truncate-boundedInt
(lambda (x y)
(blodwen-toSignedInt (exact-truncate x) y)))
(define exact-truncate-boundedUInt
(lambda (x y)
(blodwen-toUnsignedInt (exact-truncate x) y)))
(define cast-char-boundedInt
(lambda (x y)
(blodwen-toSignedInt (char->integer x) y)))
(define cast-char-boundedUInt
(lambda (x y)
(blodwen-toUnsignedInt (char->integer x) y)))
(define cast-string-int
(lambda (x)
(exact-truncate (cast-num (string->number (destroy-prefix x))))))
(define cast-string-boundedInt
(lambda (x y)
(blodwen-toSignedInt (cast-string-int x) y)))
(define cast-string-boundedUInt
(lambda (x y)
(blodwen-toUnsignedInt (cast-string-int x) y)))
(define cast-int-char
(lambda (x)
(if (or
(and (>= x 0) (<= x #xd7ff))
(and (>= x #xe000) (<= x #x10ffff)))
(integer->char x)
(integer->char 0))))
(define cast-string-double
(lambda (x)
(cast-num (string->number (destroy-prefix x)))))
(define (string-concat xs) (apply string-append xs))
(define (string-unpack s) (string->list s))
(define (string-pack xs) (list->string xs))
(define string-cons (lambda (x y) (string-append (string x) y)))
(define string-reverse (lambda (x)
(list->string (reverse (string->list x)))))
(define (string-substr off len s)
(let* ((l (string-length s))
(b (max 0 off))
(x (max 0 len))
(end (min l (+ b x))))
(if (> b l)
""
(substring s b end))))
(define (blodwen-string-iterator-new s)
0)
(define (blodwen-string-iterator-to-string _ s ofs f)
(f (substring s ofs (string-length s))))
(define (blodwen-string-iterator-next s ofs)
(if (>= ofs (string-length s))
'() ; EOF
(cons (string-ref s ofs) (+ ofs 1))))
(define either-left
(lambda (x)
(vector 0 x)))
(define either-right
(lambda (x)
(vector 1 x)))
(define blodwen-error-quit
(lambda (msg)
(display msg)
(newline)
(exit 1)))
(define (blodwen-get-line p)
(if (port? p)
(let ((str (get-line p)))
(if (eof-object? str)
""
str))
void))
(define (blodwen-get-char p)
(if (port? p)
(let ((chr (get-char p)))
(if (eof-object? chr)
#\nul
chr))
void))
;; Buffers
(define (blodwen-new-buffer size)
(make-bytevector size 0))
(define (blodwen-buffer-size buf)
(bytevector-length buf))
(define (blodwen-buffer-setbyte buf loc val)
(bytevector-u8-set! buf loc val))
(define (blodwen-buffer-getbyte buf loc)
(bytevector-u8-ref buf loc))
(define (blodwen-buffer-setbits16 buf loc val)
(bytevector-u16-set! buf loc val (native-endianness)))
(define (blodwen-buffer-getbits16 buf loc)
(bytevector-u16-ref buf loc (native-endianness)))
(define (blodwen-buffer-setbits32 buf loc val)
(bytevector-u32-set! buf loc val (native-endianness)))
(define (blodwen-buffer-getbits32 buf loc)
(bytevector-u32-ref buf loc (native-endianness)))
(define (blodwen-buffer-setbits64 buf loc val)
(bytevector-u64-set! buf loc val (native-endianness)))
(define (blodwen-buffer-getbits64 buf loc)
(bytevector-u64-ref buf loc (native-endianness)))
(define (blodwen-buffer-setint32 buf loc val)
(bytevector-s32-set! buf loc val (native-endianness)))
(define (blodwen-buffer-getint32 buf loc)
(bytevector-s32-ref buf loc (native-endianness)))
(define (blodwen-buffer-setint buf loc val)
(bytevector-s64-set! buf loc val (native-endianness)))
(define (blodwen-buffer-getint buf loc)
(bytevector-s64-ref buf loc (native-endianness)))
(define (blodwen-buffer-setdouble buf loc val)
(bytevector-ieee-double-set! buf loc val (native-endianness)))
(define (blodwen-buffer-getdouble buf loc)
(bytevector-ieee-double-ref buf loc (native-endianness)))
(define (blodwen-stringbytelen str)
(bytevector-length (string->utf8 str)))
(define (blodwen-buffer-setstring buf loc val)
(let* [(strvec (string->utf8 val))
(len (bytevector-length strvec))]
(bytevector-copy! strvec 0 buf loc len)))
(define (blodwen-buffer-getstring buf loc len)
(let [(newvec (make-bytevector len))]
(bytevector-copy! buf loc newvec 0 len)
(utf8->string newvec)))
(define (blodwen-buffer-copydata buf start len dest loc)
(bytevector-copy! buf start dest loc len))
;; Threads
(define-record thread-handle (semaphore))
(define (blodwen-thread proc)
(let [(sema (blodwen-make-semaphore 0))]
(fork-thread (lambda () (proc (vector 0)) (blodwen-semaphore-post sema)))
(make-thread-handle sema)
))
(define (blodwen-thread-wait handle)
(blodwen-semaphore-wait (thread-handle-semaphore handle)))
;; Thread mailboxes
(define blodwen-thread-data
(make-thread-parameter #f))
(define (blodwen-get-thread-data ty)
(blodwen-thread-data))
(define (blodwen-set-thread-data ty a)
(blodwen-thread-data a))
;; Semaphore
(define-record semaphore (box mutex condition))
(define (blodwen-make-semaphore init)
(make-semaphore (box init) (make-mutex) (make-condition)))
(define (blodwen-semaphore-post sema)
(with-mutex (semaphore-mutex sema)
(let [(sema-box (semaphore-box sema))]
(set-box! sema-box (+ (unbox sema-box) 1))
(condition-signal (semaphore-condition sema))
)))
(define (blodwen-semaphore-wait sema)
(with-mutex (semaphore-mutex sema)
(let [(sema-box (semaphore-box sema))]
(when (= (unbox sema-box) 0)
(condition-wait (semaphore-condition sema) (semaphore-mutex sema)))
(set-box! sema-box (- (unbox sema-box) 1))
)))
;; Barrier
(define-record barrier (count-box num-threads mutex cond))
(define (blodwen-make-barrier num-threads)
(make-barrier (box 0) num-threads (make-mutex) (make-condition)))
(define (blodwen-barrier-wait barrier)
(let [(count-box (barrier-count-box barrier))
(num-threads (barrier-num-threads barrier))
(mutex (barrier-mutex barrier))
(condition (barrier-cond barrier))]
(with-mutex mutex
(let* [(count-old (unbox count-box))
(count-new (+ count-old 1))]
(set-box! count-box count-new)
(if (= count-new num-threads)
(condition-broadcast condition)
(condition-wait condition mutex))
))))
;; Channel
; With thanks to Alain Zscheile (@zseri) for help with understanding condition
; variables, and figuring out where the problems were and how to solve them.
(define-record channel (read-mut read-cv read-box val-cv val-box))
(define (blodwen-make-channel ty)
(make-channel
(make-mutex)
(make-condition)
(box #t)
(make-condition)
(box '())
))
; block on the read status using read-cv until the value has been read
(define (channel-put-while-helper chan)
(let ([read-mut (channel-read-mut chan)]
[read-box (channel-read-box chan)]
[read-cv (channel-read-cv chan)]
)
(if (unbox read-box)
(void) ; val has been read, so everything is fine
(begin ; otherwise, block/spin with cv
(condition-wait read-cv read-mut)
(channel-put-while-helper chan)
)
)))
(define (blodwen-channel-put ty chan val)
(with-mutex (channel-read-mut chan)
(channel-put-while-helper chan)
(let ([read-box (channel-read-box chan)]
[val-box (channel-val-box chan)]
)
(set-box! val-box val)
(set-box! read-box #f)
))
(condition-signal (channel-val-cv chan))
)
; block on the value until it has been set
(define (channel-get-while-helper chan)
(let ([read-mut (channel-read-mut chan)]
[read-box (channel-read-box chan)]
[val-cv (channel-val-cv chan)]
)
(if (unbox read-box)
(begin
(condition-wait val-cv read-mut)
(channel-get-while-helper chan)
)
(void)
)))
(define (blodwen-channel-get ty chan)
(mutex-acquire (channel-read-mut chan))
(channel-get-while-helper chan)
(let* ([val-box (channel-val-box chan)]
[read-box (channel-read-box chan)]
[read-cv (channel-read-cv chan)]
[the-val (unbox val-box)]
)
(set-box! val-box '())
(set-box! read-box #t)
(mutex-release (channel-read-mut chan))
(condition-signal read-cv)
the-val))
;; Mutex
(define (blodwen-make-mutex)
(make-mutex))
(define (blodwen-mutex-acquire mutex)
(mutex-acquire mutex))
(define (blodwen-mutex-release mutex)
(mutex-release mutex))
;; Condition variable
(define (blodwen-make-condition)
(make-condition))
(define (blodwen-condition-wait condition mutex)
(condition-wait condition mutex))
(define (blodwen-condition-wait-timeout condition mutex timeout)
(let* [(sec (div timeout 1000000))
(micro (mod timeout 1000000))]
(condition-wait condition mutex (make-time 'time-duration (* 1000 micro) sec))))
(define (blodwen-condition-signal condition)
(condition-signal condition))
(define (blodwen-condition-broadcast condition)
(condition-broadcast condition))
;; Future
(define-record future-internal (result ready mutex signal))
(define (blodwen-make-future work)
(let ([future (make-future-internal #f #f (make-mutex) (make-condition))])
(fork-thread (lambda ()
(let ([result (work)])
(with-mutex (future-internal-mutex future)
(set-future-internal-result! future result)
(set-future-internal-ready! future #t)
(condition-broadcast (future-internal-signal future))))))
future))
(define (blodwen-await-future ty future)
(let ([mutex (future-internal-mutex future)])
(with-mutex mutex
(if (not (future-internal-ready future))
(condition-wait (future-internal-signal future) mutex))
(future-internal-result future))))
(define (blodwen-sleep s) (sleep (make-time 'time-duration 0 s)))
(define (blodwen-usleep s)
(let ((sec (div s 1000000))
(micro (mod s 1000000)))
(sleep (make-time 'time-duration (* 1000 micro) sec))))
(define (blodwen-clock-time-utc) (current-time 'time-utc))
(define (blodwen-clock-time-monotonic) (current-time 'time-monotonic))
(define (blodwen-clock-time-duration) (current-time 'time-duration))
(define (blodwen-clock-time-process) (current-time 'time-process))
(define (blodwen-clock-time-thread) (current-time 'time-thread))
(define (blodwen-clock-time-gccpu) (current-time 'time-collector-cpu))
(define (blodwen-clock-time-gcreal) (current-time 'time-collector-real))
(define (blodwen-is-time? clk) (if (time? clk) 1 0))
(define (blodwen-clock-second time) (time-second time))
(define (blodwen-clock-nanosecond time) (time-nanosecond time))
(define (blodwen-arg-count)
(length (command-line)))
(define (blodwen-arg n)
(if (< n (length (command-line))) (list-ref (command-line) n) ""))
(define (blodwen-hasenv var)
(if (eq? (getenv var) #f) 0 1))
;; Randoms
(define random-seed-register 0)
(define (initialize-random-seed-once)
(if (= (virtual-register random-seed-register) 0)
(let ([seed (time-nanosecond (current-time))])
(set-virtual-register! random-seed-register seed)
(random-seed seed))))
(define (blodwen-random-seed seed)
(set-virtual-register! random-seed-register seed)
(random-seed seed))
(define blodwen-random
(case-lambda
;; no argument, pick a real value from [0, 1.0)
[() (begin
(initialize-random-seed-once)
(random 1.0))]
;; single argument k, pick an integral value from [0, k)
[(k)
(begin
(initialize-random-seed-once)
(if (> k 0)
(random k)
(assertion-violationf 'blodwen-random "invalid range argument ~a" k)))]))
;; For finalisers
(define blodwen-finaliser (make-guardian))
(define (blodwen-register-object obj proc)
(let [(x (cons obj proc))]
(blodwen-finaliser x)
x))
(define blodwen-run-finalisers
(lambda ()
(let run ()
(let ([x (blodwen-finaliser)])
(when x
(((cdr x) (car x)) 'erased)
(run))))))
;; For creating and reading back scheme objects
; read a scheme string and evaluate it, returning 'Just result' on success
; TODO: catch exception!
(define (blodwen-eval-scheme str)
(box (eval (read (open-input-string str))))) ; box == Just
(define (blodwen-eval-okay obj)
(if (null? obj)
0
1))
(define (blodwen-get-eval-result obj)
(unbox obj))
(define (blodwen-debug-scheme obj)
(display obj) (newline))
(define (blodwen-is-number obj)
(if (number? obj) 1 0))
(define (blodwen-is-integer obj)
(if (and (number? obj) (exact? obj)) 1 0))
(define (blodwen-is-float obj)
(if (flonum? obj) 1 0))
(define (blodwen-is-char obj)
(if (char? obj) 1 0))
(define (blodwen-is-string obj)
(if (string? obj) 1 0))
(define (blodwen-is-procedure obj)
(if (procedure? obj) 1 0))
(define (blodwen-is-symbol obj)
(if (symbol? obj) 1 0))
(define (blodwen-is-vector obj)
(if (vector? obj) 1 0))
(define (blodwen-is-nil obj)
(if (null? obj) 1 0))
(define (blodwen-is-pair obj)
(if (pair? obj) 1 0))
(define (blodwen-is-box obj)
(if (box? obj) 1 0))
(define (blodwen-make-symbol str)
(string->symbol str))
; The below rely on checking that the objects are the right type first.
(define (blodwen-vector-ref obj i)
(vector-ref obj i))
(define (blodwen-vector-length obj)
(vector-length obj))
(define (blodwen-vector-list obj)
(vector->list obj))
(define (blodwen-unbox obj)
(unbox obj))
(define (blodwen-apply obj arg)
(obj arg))
(define (blodwen-force obj)
(obj))
(define (blodwen-read-symbol sym)
(symbol->string sym))
(define (blodwen-id x) x)