Idris2/libs/contrib/Data/String/Parser.idr
Alex Humphreys 71a638ef28 Add extra parsers
This also changes the return type of `char` and `string`. They
previously returned `()`, they now return `Char` and `String`
repectively.

Signed-off-by: Alex Humphreys <alex.humphreys@here.com>
2020-11-27 11:54:12 +00:00

362 lines
11 KiB
Idris

||| A simple parser combinator library for strings. Inspired by attoparsec zepto.
module Data.String.Parser
import public Control.Monad.Identity
import Control.Monad.Trans
import Data.Strings
import Data.Fin
import Data.List
import Data.List1
import Data.Vect
%default total
||| The input state, pos is position in the string and maxPos is the length of the input string.
public export
record State where
constructor S
input : String
pos : Int
maxPos : Int
Show State where
show s = "(" ++ show s.input ++ ", " ++ show s.pos ++ ", " ++ show s.maxPos ++ ")"
||| Result of applying a parser
public export
data Result a = Fail Int String | OK a State
Functor Result where
map f (Fail i err) = Fail i err
map f (OK r s) = OK (f r) s
public export
record ParseT (m : Type -> Type) (a : Type) where
constructor P
runParser : State -> m (Result a)
public export
Parser : Type -> Type
Parser = ParseT Identity
public export
Functor m => Functor (ParseT m) where
map f p = P $ \s => map (map f) (p.runParser s)
public export
Monad m => Applicative (ParseT m) where
pure x = P $ \s => pure $ OK x s
f <*> x = P $ \s => case !(f.runParser s) of
OK f' s' => map (map f') (x.runParser s')
Fail i err => pure $ Fail i err
public export
Monad m => Alternative (ParseT m) where
empty = P $ \s => pure $ Fail s.pos "no alternative left"
a <|> b = P $ \s => case !(a.runParser s) of
OK r s' => pure $ OK r s'
Fail _ _ => b.runParser s
public export
Monad m => Monad (ParseT m) where
m >>= k = P $ \s => case !(m.runParser s) of
OK a s' => (k a).runParser s'
Fail i err => pure $ Fail i err
public export
MonadTrans ParseT where
lift x = P $ \s => map (flip OK s) x
||| Run a parser in a monad
||| Returns a tuple of the result and final position on success.
||| Returns an error message on failure.
export
parseT : Functor m => ParseT m a -> String -> m (Either String (a, Int))
parseT p str = map (\case
OK r s => Right (r, s.pos)
Fail i err => Left $ fastAppend ["Parse failed at position ", show i, ": ", err])
(p.runParser (S str 0 (strLength str)))
||| Run a parser in a pure function
||| Returns a tuple of the result and final position on success.
||| Returns an error message on failure.
export
parse : Parser a -> String -> Either String (a, Int)
parse p str = runIdentity $ parseT p str
||| Combinator that replaces the error message on failure.
||| This allows combinators to output relevant errors
export
(<?>) : Functor m => ParseT m a -> String -> ParseT m a
(<?>) p msg = P $ \s => map (\case
OK r s' => OK r s'
Fail i _ => Fail i msg)
(p.runParser s)
infixl 0 <?>
||| Discards the result of a parser
export
skip : Functor m => ParseT m a -> ParseT m ()
skip = ignore
||| Maps the result of the parser `p` or returns `def` if it fails.
export
optionMap : Functor m => b -> (a -> b) -> ParseT m a -> ParseT m b
optionMap def f p = P $ \s => map (\case
OK r s' => OK (f r) s'
Fail _ _ => OK def s)
(p.runParser s)
||| Runs the result of the parser `p` or returns `def` if it fails.
export
option : Functor m => a -> ParseT m a -> ParseT m a
option def = optionMap def id
||| Returns a Bool indicating whether `p` succeeded
export
succeeds : Functor m => ParseT m a -> ParseT m Bool
succeeds = optionMap False (const True)
||| Returns a Maybe that contains the result of `p` if it succeeds or `Nothing` if it fails.
export
optional : Functor m => ParseT m a -> ParseT m (Maybe a)
optional = optionMap Nothing Just
||| Succeeds if and only if the argument parser fails.
|||
||| In Parsec, this combinator is called `notFollowedBy`.
export
requireFailure : Functor m => ParseT m a -> ParseT m ()
requireFailure (P runParser) = P $ \s => reverseResult s <$> runParser s
where
reverseResult : State -> Result a -> Result ()
reverseResult s (Fail _ _) = OK () s
reverseResult s (OK _ _) = Fail (pos s) "Purposefully changed OK to Fail"
||| Fail with some error message
export
fail : Applicative m => String -> ParseT m a
fail x = P $ \s => pure $ Fail s.pos x
||| Succeeds if the next char satisfies the predicate `f`
export
satisfy : Applicative m => (Char -> Bool) -> ParseT m Char
satisfy f = P $ \s => pure $ if s.pos < s.maxPos
then let ch = assert_total $ strIndex s.input s.pos in
if f ch
then OK ch (S s.input (s.pos + 1) s.maxPos)
else Fail s.pos "satisfy"
else Fail s.pos "satisfy"
||| Succeeds if the string `str` follows.
export
string : Applicative m => String -> ParseT m String
string str = P $ \s => pure $ let len = strLength str in
if s.pos+len <= s.maxPos
then let head = strSubstr s.pos len s.input in
if head == str
then OK str (S s.input (s.pos + len) s.maxPos)
else Fail s.pos ("string " ++ show str)
else Fail s.pos ("string " ++ show str)
||| Succeeds if the end of the string is reached.
export
eos : Applicative m => ParseT m ()
eos = P $ \s => pure $ if s.pos == s.maxPos
then OK () s
else Fail s.pos "expected the end of the string"
||| Succeeds if the next char is `c`
export
char : Applicative m => Char -> ParseT m Char
char c = satisfy (== c) <?> "char " ++ show c
||| Parses a space character
export
space : Applicative m => ParseT m Char
space = satisfy isSpace <?> "space"
||| Parses a letter or digit (a character between \'0\' and \'9\').
||| Returns the parsed character.
export
alphaNum : Applicative m => ParseT m Char
alphaNum = satisfy isAlphaNum <?> "letter or digit"
||| Parses a letter (an upper case or lower case character). Returns the
||| parsed character.
export
letter : Applicative m => ParseT m Char
letter = satisfy isAlpha <?> "letter"
mutual
||| Succeeds if `p` succeeds, will continue to match `p` until it fails
||| and accumulate the results in a list
export
covering
some : Monad m => ParseT m a -> ParseT m (List a)
some p = [| p :: many p |]
||| Always succeeds, will accumulate the results of `p` in a list until it fails.
export
covering
many : Monad m => ParseT m a -> ParseT m (List a)
many p = some p <|> pure []
||| Parse left-nested lists of the form `((init op arg) op arg) op arg`
export
covering
hchainl : Monad m => ParseT m init -> ParseT m (init -> arg -> init) -> ParseT m arg -> ParseT m init
hchainl pini pop parg = pini >>= go
where
covering
go : init -> ParseT m init
go x = (do op <- pop
arg <- parg
go $ op x arg) <|> pure x
||| Parse right-nested lists of the form `arg op (arg op (arg op end))`
export
covering
hchainr : Monad m => ParseT m arg -> ParseT m (arg -> end -> end) -> ParseT m end -> ParseT m end
hchainr parg pop pend = go id <*> pend
where
covering
go : (end -> end) -> ParseT m (end -> end)
go f = (do arg <- parg
op <- pop
go $ f . op arg) <|> pure f
||| Always succeeds, applies the predicate `f` on chars until it fails and creates a string
||| from the results.
export
covering
takeWhile : Monad m => (Char -> Bool) -> ParseT m String
takeWhile f = pack <$> many (satisfy f)
||| Similar to `takeWhile` but fails if the resulting string is empty.
export
covering
takeWhile1 : Monad m => (Char -> Bool) -> ParseT m String
takeWhile1 f = pack <$> some (satisfy f)
||| Parses zero or more space characters
export
covering
spaces : Monad m => ParseT m ()
spaces = skip (many space)
||| Parses one or more space characters
export
covering
spaces1 : Monad m => ParseT m ()
spaces1 = skip (some space) <?> "whitespaces"
||| Discards brackets around a matching parser
export
parens : Monad m => ParseT m a -> ParseT m a
parens p = char '(' *> p <* char ')'
||| Discards whitespace after a matching parser
export
covering
lexeme : Monad m => ParseT m a -> ParseT m a
lexeme p = p <* spaces
||| Matches a specific string, then skips following whitespace
export
covering
token : Monad m => String -> ParseT m ()
token s = lexeme (skip $ string s) <?> "token " ++ show s
||| Matches a single digit
export
digit : Monad m => ParseT m (Fin 10)
digit = do x <- satisfy isDigit
case lookup x digits of
Nothing => fail "not a digit"
Just y => pure y
where
digits : List (Char, Fin 10)
digits = [ ('0', 0)
, ('1', 1)
, ('2', 2)
, ('3', 3)
, ('4', 4)
, ('5', 5)
, ('6', 6)
, ('7', 7)
, ('8', 8)
, ('9', 9)
]
fromDigits : Num a => (Fin 10 -> a) -> List (Fin 10) -> a
fromDigits f xs = foldl addDigit 0 xs
where
addDigit : a -> Fin 10 -> a
addDigit num d = 10*num + f d
intFromDigits : List (Fin 10) -> Integer
intFromDigits = fromDigits finToInteger
natFromDigits : List (Fin 10) -> Nat
natFromDigits = fromDigits finToNat
||| Matches a natural number
export
covering
natural : Monad m => ParseT m Nat
natural = natFromDigits <$> some digit
||| Matches an integer, eg. "12", "-4"
export
covering
integer : Monad m => ParseT m Integer
integer = do minus <- succeeds (char '-')
x <- some digit
pure $ if minus then (intFromDigits x)*(-1) else intFromDigits x
||| Parse repeated instances of at least one `p`, separated by `s`,
||| returning a list of successes.
|||
||| @ p the parser for items
||| @ s the parser for separators
export
covering
sepBy1 : Monad m => (p : ParseT m a)
-> (s : ParseT m b)
-> ParseT m (List1 a)
sepBy1 p s = [| p ::: many (s *> p) |]
||| Parse zero or more `p`s, separated by `s`s, returning a list of
||| successes.
|||
||| @ p the parser for items
||| @ s the parser for separators
export
covering
sepBy : Monad m => (p : ParseT m a)
-> (s : ParseT m b)
-> ParseT m (List a)
sepBy p s = optionMap [] forget (p `sepBy1` s)
||| Parses /one/ or more occurrences of `p` separated by `comma`.
export
covering
commaSep1 : Monad m => ParseT m a -> ParseT m (List1 a)
commaSep1 p = p `sepBy1` (char ',')
||| Parses /zero/ or more occurrences of `p` separated by `comma`.
export
covering
commaSep : Monad m => ParseT m a -> ParseT m (List a)
commaSep p = p `sepBy` (char ',')
||| Run the specified parser precisely `n` times, returning a vector
||| of successes.
export
ntimes : Monad m => (n : Nat) -> ParseT m a -> ParseT m (Vect n a)
ntimes Z p = pure Vect.Nil
ntimes (S n) p = [| p :: (ntimes n p) |]