Idris2/libs/base/Data/Nat/Order.idr

85 lines
2.8 KiB
Idris

||| Implementation of ordering relations for `Nat`ural numbers
module Data.Nat.Order
import Data.Nat
import Data.Fun
import Data.Rel
import Decidable.Decidable
import Decidable.Equality
import Decidable.Order
public export
total LTEIsTransitive : (m : Nat) -> (n : Nat) -> (o : Nat) ->
LTE m n -> LTE n o ->
LTE m o
LTEIsTransitive Z n o LTEZero nlteo = LTEZero
LTEIsTransitive (S m) (S n) (S o) (LTESucc mlten) (LTESucc nlteo) = LTESucc (LTEIsTransitive m n o mlten nlteo)
public export
total LTEIsReflexive : (n : Nat) -> LTE n n
LTEIsReflexive Z = LTEZero
LTEIsReflexive (S n) = LTESucc (LTEIsReflexive n)
public export
implementation Preorder Nat LTE where
transitive = LTEIsTransitive
reflexive = LTEIsReflexive
public export
total LTEIsAntisymmetric : (m : Nat) -> (n : Nat) ->
LTE m n -> LTE n m -> m = n
LTEIsAntisymmetric Z Z LTEZero LTEZero = Refl
LTEIsAntisymmetric (S n) (S m) (LTESucc mLTEn) (LTESucc nLTEm) with (LTEIsAntisymmetric n m mLTEn nLTEm)
LTEIsAntisymmetric (S n) (S n) (LTESucc mLTEn) (LTESucc nLTEm) | Refl = Refl
public export
implementation Poset Nat LTE where
antisymmetric = LTEIsAntisymmetric
public export
total zeroNeverGreater : {n : Nat} -> LTE (S n) Z -> Void
zeroNeverGreater {n} LTEZero impossible
zeroNeverGreater {n} (LTESucc _) impossible
public export
total zeroAlwaysSmaller : {n : Nat} -> LTE Z n
zeroAlwaysSmaller = LTEZero
public export
total ltesuccinjective : {0 n : Nat} -> {0 m : Nat} -> (LTE n m -> Void) -> LTE (S n) (S m) -> Void
ltesuccinjective {n} {m} disprf (LTESucc nLTEm) = void (disprf nLTEm)
ltesuccinjective {n} {m} disprf LTEZero impossible
public export
total decideLTE : (n : Nat) -> (m : Nat) -> Dec (LTE n m)
decideLTE Z y = Yes LTEZero
decideLTE (S x) Z = No zeroNeverGreater
decideLTE (S x) (S y) with (decEq (S x) (S y))
decideLTE (S x) (S y) | Yes eq = rewrite eq in Yes (reflexive (S y))
decideLTE (S x) (S y) | No _ with (decideLTE x y)
decideLTE (S x) (S y) | No _ | Yes nLTEm = Yes (LTESucc nLTEm)
decideLTE (S x) (S y) | No _ | No nGTm = No (ltesuccinjective nGTm)
public export
implementation Decidable [Nat,Nat] LTE where
decide = decideLTE
public export
total
lte : (m : Nat) -> (n : Nat) -> Dec (LTE m n)
lte m n = decide {ts = [Nat,Nat]} {p = LTE} m n
public export
total
shift : (m : Nat) -> (n : Nat) -> LTE m n -> LTE (S m) (S n)
shift m n mLTEn = LTESucc mLTEn
public export
implementation Ordered Nat LTE where
order Z n = Left LTEZero
order m Z = Right LTEZero
order (S k) (S j) with (order {to=LTE} k j)
order (S k) (S j) | Left prf = Left (shift k j prf)
order (S k) (S j) | Right prf = Right (shift j k prf)