mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-01 09:49:24 +03:00
291 lines
9.8 KiB
Idris
291 lines
9.8 KiB
Idris
module Control.Algebra.Laws
|
|
|
|
import Control.Algebra
|
|
|
|
%default total
|
|
|
|
-- Monoids
|
|
|
|
||| Inverses are unique.
|
|
public export
|
|
uniqueInverse : MonoidV ty => (x, y, z : ty) ->
|
|
y <+> x = neutral {ty} -> x <+> z = neutral {ty} -> y = z
|
|
uniqueInverse x y z p q =
|
|
rewrite sym $ monoidNeutralIsNeutralL y in
|
|
rewrite sym q in
|
|
rewrite semigroupOpIsAssociative y x z in
|
|
rewrite p in
|
|
rewrite monoidNeutralIsNeutralR z in
|
|
Refl
|
|
|
|
-- Groups
|
|
|
|
||| Only identity is self-squaring.
|
|
public export
|
|
selfSquareId : Group ty => (x : ty) ->
|
|
x <+> x = x -> x = neutral {ty}
|
|
selfSquareId x p =
|
|
rewrite sym $ monoidNeutralIsNeutralR x in
|
|
rewrite sym $ groupInverseIsInverseR x in
|
|
rewrite sym $ semigroupOpIsAssociative (inverse x) x x in
|
|
rewrite p in
|
|
Refl
|
|
|
|
||| Inverse elements commute.
|
|
public export
|
|
inverseCommute : Group ty => (x, y : ty) ->
|
|
y <+> x = neutral {ty} -> x <+> y = neutral {ty}
|
|
inverseCommute x y p = selfSquareId (x <+> y) prop where
|
|
prop : (x <+> y) <+> (x <+> y) = x <+> y
|
|
prop =
|
|
rewrite sym $ semigroupOpIsAssociative x y (x <+> y) in
|
|
rewrite semigroupOpIsAssociative y x y in
|
|
rewrite p in
|
|
rewrite monoidNeutralIsNeutralR y in
|
|
Refl
|
|
|
|
||| Every element has a right inverse.
|
|
public export
|
|
groupInverseIsInverseL : Group ty => (x : ty) ->
|
|
x <+> inverse x = neutral {ty}
|
|
groupInverseIsInverseL x =
|
|
inverseCommute x (inverse x) (groupInverseIsInverseR x)
|
|
|
|
||| -(-x) = x
|
|
public export
|
|
inverseSquaredIsIdentity : Group ty => (x : ty) ->
|
|
inverse (inverse x) = x
|
|
inverseSquaredIsIdentity {ty} x =
|
|
uniqueInverse
|
|
(inverse x)
|
|
(inverse $ inverse x)
|
|
x
|
|
(groupInverseIsInverseR $ inverse x)
|
|
(groupInverseIsInverseR x)
|
|
|
|
||| If every square in a group is identity, the group is commutative.
|
|
public export
|
|
squareIdCommutative : Group ty => (x, y : ty) ->
|
|
((a : ty) -> a <+> a = neutral {ty}) ->
|
|
x <+> y = y <+> x
|
|
squareIdCommutative x y p =
|
|
uniqueInverse (x <+> y) (x <+> y) (y <+> x) (p (x <+> y)) prop where
|
|
prop : (x <+> y) <+> (y <+> x) = neutral {ty}
|
|
prop =
|
|
rewrite sym $ semigroupOpIsAssociative x y (y <+> x) in
|
|
rewrite semigroupOpIsAssociative y y x in
|
|
rewrite p y in
|
|
rewrite monoidNeutralIsNeutralR x in
|
|
p x
|
|
|
|
||| -0 = 0
|
|
public export
|
|
inverseNeutralIsNeutral : Group ty =>
|
|
inverse (neutral {ty}) = neutral {ty}
|
|
inverseNeutralIsNeutral {ty} =
|
|
rewrite sym $ cong inverse (groupInverseIsInverseL (neutral {ty})) in
|
|
rewrite monoidNeutralIsNeutralR $ inverse (neutral {ty}) in
|
|
inverseSquaredIsIdentity (neutral {ty})
|
|
|
|
-- ||| -(x + y) = -y + -x
|
|
-- public export
|
|
-- inverseOfSum : Group ty => (l, r : ty) ->
|
|
-- inverse (l <+> r) = inverse r <+> inverse l
|
|
-- inverseOfSum {ty} l r =
|
|
-- -- expand
|
|
-- rewrite sym $ monoidNeutralIsNeutralR $ inverse $ l <+> r in
|
|
-- rewrite sym $ groupInverseIsInverseR r in
|
|
-- rewrite sym $ monoidNeutralIsNeutralL $ inverse r in
|
|
-- rewrite sym $ groupInverseIsInverseR l in
|
|
-- -- shuffle
|
|
-- rewrite semigroupOpIsAssociative (inverse r) (inverse l) l in
|
|
-- rewrite sym $ semigroupOpIsAssociative (inverse r <+> inverse l) l r in
|
|
-- rewrite sym $ semigroupOpIsAssociative (inverse r <+> inverse l) (l <+> r) (inverse $ l <+> r) in
|
|
-- -- contract
|
|
-- rewrite sym $ monoidNeutralIsNeutralL $ inverse l in
|
|
-- rewrite groupInverseIsInverseL $ l <+> r in
|
|
-- rewrite sym $ semigroupOpIsAssociative (inverse r <+> (inverse l <+> neutral)) l (inverse l <+> neutral) in
|
|
-- rewrite semigroupOpIsAssociative l (inverse l) neutral in
|
|
-- rewrite groupInverseIsInverseL l in
|
|
-- rewrite monoidNeutralIsNeutralL $ the ty neutral in
|
|
-- Refl
|
|
|
|
||| y = z if x + y = x + z
|
|
public export
|
|
cancelLeft : Group ty => (x, y, z : ty) ->
|
|
x <+> y = x <+> z -> y = z
|
|
cancelLeft x y z p =
|
|
rewrite sym $ monoidNeutralIsNeutralR y in
|
|
rewrite sym $ groupInverseIsInverseR x in
|
|
rewrite sym $ semigroupOpIsAssociative (inverse x) x y in
|
|
rewrite p in
|
|
rewrite semigroupOpIsAssociative (inverse x) x z in
|
|
rewrite groupInverseIsInverseR x in
|
|
monoidNeutralIsNeutralR z
|
|
|
|
||| y = z if y + x = z + x.
|
|
public export
|
|
cancelRight : Group ty => (x, y, z : ty) ->
|
|
y <+> x = z <+> x -> y = z
|
|
cancelRight x y z p =
|
|
rewrite sym $ monoidNeutralIsNeutralL y in
|
|
rewrite sym $ groupInverseIsInverseL x in
|
|
rewrite semigroupOpIsAssociative y x (inverse x) in
|
|
rewrite p in
|
|
rewrite sym $ semigroupOpIsAssociative z x (inverse x) in
|
|
rewrite groupInverseIsInverseL x in
|
|
monoidNeutralIsNeutralL z
|
|
|
|
||| ab = 0 -> a = b^-1
|
|
public export
|
|
neutralProductInverseR : Group ty => (a, b : ty) ->
|
|
a <+> b = neutral {ty} -> a = inverse b
|
|
neutralProductInverseR a b prf =
|
|
cancelRight b a (inverse b) $
|
|
trans prf $ sym $ groupInverseIsInverseR b
|
|
|
|
||| ab = 0 -> a^-1 = b
|
|
public export
|
|
neutralProductInverseL : Group ty => (a, b : ty) ->
|
|
a <+> b = neutral {ty} -> inverse a = b
|
|
neutralProductInverseL a b prf =
|
|
cancelLeft a (inverse a) b $
|
|
trans (groupInverseIsInverseL a) $ sym prf
|
|
|
|
||| For any a and b, ax = b and ya = b have solutions.
|
|
public export
|
|
latinSquareProperty : Group ty => (a, b : ty) ->
|
|
((x : ty ** a <+> x = b),
|
|
(y : ty ** y <+> a = b))
|
|
latinSquareProperty a b =
|
|
((((inverse a) <+> b) **
|
|
rewrite semigroupOpIsAssociative a (inverse a) b in
|
|
rewrite groupInverseIsInverseL a in
|
|
monoidNeutralIsNeutralR b),
|
|
(b <+> (inverse a) **
|
|
rewrite sym $ semigroupOpIsAssociative b (inverse a) a in
|
|
rewrite groupInverseIsInverseR a in
|
|
monoidNeutralIsNeutralL b))
|
|
|
|
||| For any a, b, x, the solution to ax = b is unique.
|
|
public export
|
|
uniqueSolutionR : Group ty => (a, b, x, y : ty) ->
|
|
a <+> x = b -> a <+> y = b -> x = y
|
|
uniqueSolutionR a b x y p q = cancelLeft a x y $ trans p (sym q)
|
|
|
|
||| For any a, b, y, the solution to ya = b is unique.
|
|
public export
|
|
uniqueSolutionL : Group t => (a, b, x, y : t) ->
|
|
x <+> a = b -> y <+> a = b -> x = y
|
|
uniqueSolutionL a b x y p q = cancelRight a x y $ trans p (sym q)
|
|
|
|
-- ||| -(x + y) = -x + -y
|
|
-- public export
|
|
-- inverseDistributesOverGroupOp : AbelianGroup ty => (l, r : ty) ->
|
|
-- inverse (l <+> r) = inverse l <+> inverse r
|
|
-- inverseDistributesOverGroupOp l r =
|
|
-- rewrite groupOpIsCommutative (inverse l) (inverse r) in
|
|
-- inverseOfSum l r
|
|
|
|
||| Homomorphism preserves neutral.
|
|
public export
|
|
homoNeutral : GroupHomomorphism a b =>
|
|
to (neutral {ty=a}) = neutral {ty=b}
|
|
homoNeutral =
|
|
selfSquareId (to neutral) $
|
|
trans (sym $ toGroup neutral neutral) $
|
|
cong to $ monoidNeutralIsNeutralL neutral
|
|
|
|
||| Homomorphism preserves inverses.
|
|
public export
|
|
homoInverse : GroupHomomorphism a b => (x : a) ->
|
|
the b (to $ inverse x) = the b (inverse $ to x)
|
|
homoInverse x =
|
|
cancelRight (to x) (to $ inverse x) (inverse $ to x) $
|
|
trans (sym $ toGroup (inverse x) x) $
|
|
trans (cong to $ groupInverseIsInverseR x) $
|
|
trans homoNeutral $
|
|
sym $ groupInverseIsInverseR (to x)
|
|
|
|
-- Rings
|
|
|
|
||| 0x = x
|
|
public export
|
|
multNeutralAbsorbingL : Ring ty => (r : ty) ->
|
|
neutral {ty} <.> r = neutral {ty}
|
|
multNeutralAbsorbingL {ty} r =
|
|
rewrite sym $ monoidNeutralIsNeutralR $ neutral <.> r in
|
|
rewrite sym $ groupInverseIsInverseR $ neutral <.> r in
|
|
rewrite sym $ semigroupOpIsAssociative (inverse $ neutral <.> r) (neutral <.> r) (((inverse $ neutral <.> r) <+> (neutral <.> r)) <.> r) in
|
|
rewrite groupInverseIsInverseR $ neutral <.> r in
|
|
rewrite sym $ ringOpIsDistributiveR neutral neutral r in
|
|
rewrite monoidNeutralIsNeutralR $ the ty neutral in
|
|
groupInverseIsInverseR $ neutral <.> r
|
|
|
|
||| x0 = 0
|
|
public export
|
|
multNeutralAbsorbingR : Ring ty => (l : ty) ->
|
|
l <.> neutral {ty} = neutral {ty}
|
|
multNeutralAbsorbingR {ty} l =
|
|
rewrite sym $ monoidNeutralIsNeutralL $ l <.> neutral in
|
|
rewrite sym $ groupInverseIsInverseL $ l <.> neutral in
|
|
rewrite semigroupOpIsAssociative (l <.> ((l <.> neutral) <+> (inverse $ l <.> neutral))) (l <.> neutral) (inverse $ l <.> neutral) in
|
|
rewrite groupInverseIsInverseL $ l <.> neutral in
|
|
rewrite sym $ ringOpIsDistributiveL l neutral neutral in
|
|
rewrite monoidNeutralIsNeutralL $ the ty neutral in
|
|
groupInverseIsInverseL $ l <.> neutral
|
|
|
|
||| (-x)y = -(xy)
|
|
public export
|
|
multInverseInversesL : Ring ty => (l, r : ty) ->
|
|
inverse l <.> r = inverse (l <.> r)
|
|
multInverseInversesL l r =
|
|
rewrite sym $ monoidNeutralIsNeutralR $ inverse l <.> r in
|
|
rewrite sym $ groupInverseIsInverseR $ l <.> r in
|
|
rewrite sym $ semigroupOpIsAssociative (inverse $ l <.> r) (l <.> r) (inverse l <.> r) in
|
|
rewrite sym $ ringOpIsDistributiveR l (inverse l) r in
|
|
rewrite groupInverseIsInverseL l in
|
|
rewrite multNeutralAbsorbingL r in
|
|
monoidNeutralIsNeutralL $ inverse $ l <.> r
|
|
|
|
||| x(-y) = -(xy)
|
|
public export
|
|
multInverseInversesR : Ring ty => (l, r : ty) ->
|
|
l <.> inverse r = inverse (l <.> r)
|
|
multInverseInversesR l r =
|
|
rewrite sym $ monoidNeutralIsNeutralL $ l <.> (inverse r) in
|
|
rewrite sym $ groupInverseIsInverseL (l <.> r) in
|
|
rewrite semigroupOpIsAssociative (l <.> (inverse r)) (l <.> r) (inverse $ l <.> r) in
|
|
rewrite sym $ ringOpIsDistributiveL l (inverse r) r in
|
|
rewrite groupInverseIsInverseR r in
|
|
rewrite multNeutralAbsorbingR l in
|
|
monoidNeutralIsNeutralR $ inverse $ l <.> r
|
|
|
|
||| (-x)(-y) = xy
|
|
public export
|
|
multNegativeByNegativeIsPositive : Ring ty => (l, r : ty) ->
|
|
inverse l <.> inverse r = l <.> r
|
|
multNegativeByNegativeIsPositive l r =
|
|
rewrite multInverseInversesR (inverse l) r in
|
|
rewrite sym $ multInverseInversesL (inverse l) r in
|
|
rewrite inverseSquaredIsIdentity l in
|
|
Refl
|
|
|
|
||| (-1)x = -x
|
|
public export
|
|
inverseOfUnityR : RingWithUnity ty => (x : ty) ->
|
|
inverse (unity {ty}) <.> x = inverse x
|
|
inverseOfUnityR x =
|
|
rewrite multInverseInversesL unity x in
|
|
rewrite unityIsRingIdR x in
|
|
Refl
|
|
|
|
||| x(-1) = -x
|
|
public export
|
|
inverseOfUnityL : RingWithUnity ty => (x : ty) ->
|
|
x <.> inverse (unity {ty}) = inverse x
|
|
inverseOfUnityL x =
|
|
rewrite multInverseInversesR x unity in
|
|
rewrite unityIsRingIdL x in
|
|
Refl
|