mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-21 02:31:50 +03:00
823230b77c
When working on Frex I needed a whole bunch of lemmata to do with Data.Vect. I hope it will be useful for others.
38 lines
1.3 KiB
Idris
38 lines
1.3 KiB
Idris
||| Tabulation gives a bijection between functions `f : Fin n -> a`
|
|
||| (up to extensional equality) and vectors `tabulate f : Vect n a`.
|
|
module Data.Vect.Properties.Tabulate
|
|
|
|
import Data.Vect
|
|
import Data.Fin
|
|
|
|
||| Vectors are uniquely determined by their elements
|
|
export
|
|
vectorExtensionality
|
|
: (xs, ys : Vect n a) -> (ext : (i : Fin n) -> index i xs = index i ys)
|
|
-> xs = ys
|
|
vectorExtensionality [] [] ext = Refl
|
|
vectorExtensionality (x :: xs) (y :: ys) ext =
|
|
cong2 (::)
|
|
(ext FZ)
|
|
(vectorExtensionality xs ys (\i => ext (FS i)))
|
|
|
|
||| Extensionally equivalent functions tabulate to the same vector
|
|
export
|
|
tabulateExtensional
|
|
: {n : Nat} -> (f, g : Fin n -> a) -> (ext : (i : Fin n) -> f i = g i)
|
|
-> tabulate f = tabulate g
|
|
tabulateExtensional {n = 0 } f g ext = Refl
|
|
tabulateExtensional {n = S n} f g ext =
|
|
cong2 (::) (ext FZ) (tabulateExtensional (f . FS) (g . FS) (\ i => ext $ FS i))
|
|
|
|
||| Taking an index amounts to applying the tabulated function
|
|
export
|
|
indexTabulate : {n : Nat} -> (f : Fin n -> a) -> (i : Fin n) -> index i (tabulate f) = f i
|
|
indexTabulate f FZ = Refl
|
|
indexTabulate f (FS i) = indexTabulate (f . FS) i
|
|
|
|
||| The empty vector represents the unique function `Fin 0 -> a`
|
|
export
|
|
emptyInitial : (v : Vect 0 a) -> v = []
|
|
emptyInitial [] = Refl
|