mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-17 08:11:45 +03:00
b355b12cdb
A lot of useless matches of implicit arguments were removed.
498 lines
21 KiB
Idris
498 lines
21 KiB
Idris
module Data.Nat.Factor
|
|
|
|
import Control.WellFounded
|
|
import Data.Fin
|
|
import Data.Fin.Extra
|
|
import Data.Nat
|
|
import Data.Nat.Equational
|
|
import Syntax.PreorderReasoning
|
|
|
|
%default total
|
|
|
|
|
|
||| Factor n p is a witness that p is indeed a factor of n,
|
|
||| i.e. there exists a q such that p * q = n.
|
|
public export
|
|
data Factor : Nat -> Nat -> Type where
|
|
CofactorExists : {p, n : Nat} -> (q : Nat) -> n = p * q -> Factor p n
|
|
|
|
||| NotFactor n p is a witness that p is NOT a factor of n,
|
|
||| i.e. there exist a q and an r, greater than 0 but smaller than p,
|
|
||| such that p * q + r = n.
|
|
public export
|
|
data NotFactor : Nat -> Nat -> Type where
|
|
ZeroNotFactorS : (n : Nat) -> NotFactor Z (S n)
|
|
ProperRemExists : {p, n : Nat} -> (q : Nat) ->
|
|
(r : Fin (pred p)) ->
|
|
n = p * q + S (finToNat r) ->
|
|
NotFactor p n
|
|
|
|
||| DecFactor n p is a result of the process which decides
|
|
||| whether or not p is a factor on n.
|
|
public export
|
|
data DecFactor : Nat -> Nat -> Type where
|
|
ItIsFactor : Factor p n -> DecFactor p n
|
|
ItIsNotFactor : NotFactor p n -> DecFactor p n
|
|
|
|
||| CommonFactor n m p is a witness that p is a factor of both n and m.
|
|
public export
|
|
data CommonFactor : Nat -> Nat -> Nat -> Type where
|
|
CommonFactorExists : {a, b : Nat} -> (p : Nat) -> Factor p a -> Factor p b -> CommonFactor p a b
|
|
|
|
||| GCD n m p is a witness that p is THE greatest common factor of both n and m.
|
|
||| The second argument to the constructor is a function which for all q being
|
|
||| a factor of both n and m, proves that q is a factor of p.
|
|
|||
|
|
||| This is equivalent to a more straightforward definition, stating that for
|
|
||| all q being a factor of both n and m, q is less than or equal to p, but more
|
|
||| powerful and therefore more useful for further proofs. See below for a proof
|
|
||| that if q is a factor of p then q must be less than or equal to p.
|
|
public export
|
|
data GCD : Nat -> Nat -> Nat -> Type where
|
|
MkGCD : {a, b, p : Nat} ->
|
|
{auto notBothZero : NotBothZero a b} ->
|
|
(CommonFactor p a b) ->
|
|
((q : Nat) -> CommonFactor q a b -> Factor q p) ->
|
|
GCD p a b
|
|
|
|
|
|
Uninhabited (Factor Z (S n)) where
|
|
uninhabited (CofactorExists q prf) = uninhabited prf
|
|
|
|
||| Given a statement that p is factor of n, return its cofactor.
|
|
export
|
|
cofactor : Factor p n -> (q : Nat ** Factor q n)
|
|
cofactor (CofactorExists {n} {p} q prf) =
|
|
(q ** CofactorExists p $ rewrite multCommutative q p in prf)
|
|
|
|
||| 1 is a factor of any natural number.
|
|
export
|
|
oneIsFactor : (n : Nat) -> Factor 1 n
|
|
oneIsFactor Z = CofactorExists Z Refl
|
|
oneIsFactor (S k) = CofactorExists (S k) (rewrite plusZeroRightNeutral k in Refl)
|
|
|
|
||| 1 is the only factor of itself
|
|
export
|
|
oneSoleFactorOfOne : (a : Nat) -> Factor a 1 -> a = 1
|
|
oneSoleFactorOfOne Z (CofactorExists q prf) = absurd $ uninhabited prf
|
|
oneSoleFactorOfOne (S Z) (CofactorExists _ _) = Refl
|
|
oneSoleFactorOfOne (S (S k)) (CofactorExists Z prf) =
|
|
absurd . uninhabited $ replace {p = \x => 1 = x} (multZeroRightZero k) prf
|
|
oneSoleFactorOfOne (S (S k)) (CofactorExists (S j) prf) =
|
|
absurd . uninhabited . succInjective 0 (S j + (j + (k * S j))) $
|
|
replace {p = \x => 1 = S x} (sym $ plusSuccRightSucc j (j + (k * S j))) prf
|
|
|
|
||| Every natural number is factor of itself.
|
|
export
|
|
factorReflexive : (n : Nat) -> Factor n n
|
|
factorReflexive a = CofactorExists 1 (rewrite multOneRightNeutral a in Refl)
|
|
|
|
||| Factor relation is transitive. If b is factor of a and c is b factor of c
|
|
||| is also a factor of a.
|
|
export
|
|
factorTransitive : (a, b, c : Nat) -> Factor a b -> Factor b c -> Factor a c
|
|
factorTransitive a b c (CofactorExists qb prfAB) (CofactorExists qc prfBC) =
|
|
CofactorExists (qb * qc) (
|
|
rewrite prfBC in
|
|
rewrite prfAB in
|
|
rewrite multAssociative a qb qc in
|
|
Refl
|
|
)
|
|
|
|
multOneSoleNeutral : (a, b : Nat) -> S a = S a * b -> b = 1
|
|
multOneSoleNeutral Z b prf =
|
|
rewrite sym $ plusZeroRightNeutral b in
|
|
sym prf
|
|
multOneSoleNeutral (S k) Z prf =
|
|
absurd . uninhabited $
|
|
replace {p = \x => S (S k) = x} (multZeroRightZero k) prf
|
|
multOneSoleNeutral (S k) (S Z) prf = Refl
|
|
multOneSoleNeutral (S k) (S (S j)) prf =
|
|
absurd . uninhabited .
|
|
subtractEqLeft k {b = 0} {c = S j + S (j + (k * S j))} $
|
|
rewrite plusSuccRightSucc j (S (j + (k * S j))) in
|
|
rewrite plusZeroRightNeutral k in
|
|
rewrite plusAssociative k j (S (S (j + (k * S j)))) in
|
|
rewrite sym $ plusCommutative j k in
|
|
rewrite sym $ plusAssociative j k (S (S (j + (k * S j)))) in
|
|
rewrite sym $ plusSuccRightSucc k (S (j + (k * S j))) in
|
|
rewrite sym $ plusSuccRightSucc k (j + (k * S j)) in
|
|
rewrite plusAssociative k j (k * S j) in
|
|
rewrite plusCommutative k j in
|
|
rewrite sym $ plusAssociative j k (k * S j) in
|
|
rewrite sym $ multRightSuccPlus k (S j) in
|
|
succInjective k (j + (S (S (j + (k * (S (S j))))))) $
|
|
succInjective (S k) (S (j + (S (S (j + (k * (S (S j)))))))) prf
|
|
|
|
||| If a is a factor of b and b is a factor of a, then we can conclude a = b.
|
|
export
|
|
factorAntisymmetric : {a, b : Nat} -> Factor a b -> Factor b a -> a = b
|
|
factorAntisymmetric {a = 0} (CofactorExists qa prfAB) (CofactorExists qb prfBA) = sym prfAB
|
|
factorAntisymmetric {a = S a} {b = 0} (CofactorExists qa prfAB) (CofactorExists qb prfBA) = prfBA
|
|
factorAntisymmetric {a = S a} {b = S b} (CofactorExists qa prfAB) (CofactorExists qb prfBA) =
|
|
let qIs1 = multOneSoleNeutral a (qa * qb) $
|
|
rewrite multAssociative (S a) qa qb in
|
|
rewrite sym prfAB in
|
|
prfBA
|
|
in
|
|
rewrite prfAB in
|
|
rewrite oneSoleFactorOfOne qa . CofactorExists qb $ sym qIs1 in
|
|
rewrite multOneRightNeutral a in
|
|
Refl
|
|
|
|
||| No number can simultaneously be and not be a factor of another number.
|
|
export
|
|
factorNotFactorAbsurd : {n, p : Nat} -> Factor p n -> NotFactor p n -> Void
|
|
factorNotFactorAbsurd {n = S k} {p = Z} (CofactorExists q prf) (ZeroNotFactorS k) =
|
|
uninhabited prf
|
|
factorNotFactorAbsurd {n} {p} (CofactorExists q prf) (ProperRemExists q' r contra) with (cmp q q')
|
|
factorNotFactorAbsurd {n} {p} (CofactorExists q prf) (ProperRemExists (q + S d) r contra) | CmpLT d =
|
|
SIsNotZ .
|
|
subtractEqLeft (p * q) {b = S ((p * S d) + finToNat r)} {c = 0} $
|
|
rewrite plusZeroRightNeutral (p * q) in
|
|
rewrite plusSuccRightSucc (p * S d) (finToNat r) in
|
|
rewrite plusAssociative (p * q) (p * S d) (S (finToNat r)) in
|
|
rewrite sym $ multDistributesOverPlusRight p q (S d) in
|
|
rewrite sym contra in
|
|
rewrite sym prf in
|
|
Refl
|
|
factorNotFactorAbsurd {n} {p} (CofactorExists q prf) (ProperRemExists q r contra) | CmpEQ =
|
|
uninhabited .
|
|
subtractEqLeft (p * q) {b = (S (finToNat r))} {c = 0} $
|
|
rewrite plusZeroRightNeutral (p * q) in
|
|
rewrite sym contra in
|
|
prf
|
|
factorNotFactorAbsurd {n} {p} (CofactorExists (q + S d) prf) (ProperRemExists q r contra) | CmpGT d =
|
|
let srEQpPlusPD = the (plus p (mult p d) = S (finToNat r)) $
|
|
rewrite sym $ multRightSuccPlus p d in
|
|
subtractEqLeft (p * q) {b = p * (S d)} {c = S (finToNat r)} $
|
|
rewrite sym $ multDistributesOverPlusRight p q (S d) in
|
|
rewrite sym contra in
|
|
sym prf
|
|
in
|
|
case p of
|
|
Z => uninhabited srEQpPlusPD
|
|
(S k) =>
|
|
succNotLTEzero .
|
|
subtractLteLeft k {b = S (d + (k * d))} {c = 0} $
|
|
rewrite sym $ plusSuccRightSucc k (d + (k * d)) in
|
|
rewrite plusZeroRightNeutral k in
|
|
rewrite srEQpPlusPD in
|
|
elemSmallerThanBound r
|
|
|
|
|
|
||| Anything is a factor of 0.
|
|
export
|
|
anythingFactorZero : (a : Nat) -> Factor a 0
|
|
anythingFactorZero a = CofactorExists 0 (sym $ multZeroRightZero a)
|
|
|
|
||| For all natural numbers p and q, p is a factor of (p * q).
|
|
export
|
|
multFactor : (p, q : Nat) -> Factor p (p * q)
|
|
multFactor p q = CofactorExists q Refl
|
|
|
|
||| If n > 0 then any factor of n must be less than or equal to n.
|
|
export
|
|
factorLteNumber : Factor p n -> {auto positN : LTE 1 n} -> LTE p n
|
|
factorLteNumber (CofactorExists Z prf) =
|
|
let nIsZero = replace {p = \x => n = x} (multZeroRightZero p) prf
|
|
oneLteZero = replace {p = LTE 1} nIsZero positN
|
|
in
|
|
absurd $ succNotLTEzero oneLteZero
|
|
factorLteNumber (CofactorExists (S k) prf) =
|
|
rewrite prf in
|
|
leftFactorLteProduct p k
|
|
|
|
||| If p is a factor of n, then it is also a factor of (n + p).
|
|
export
|
|
plusDivisorAlsoFactor : Factor p n -> Factor p (n + p)
|
|
plusDivisorAlsoFactor (CofactorExists q prf) =
|
|
CofactorExists (S q)
|
|
rewrite plusCommutative n p in
|
|
rewrite multRightSuccPlus p q in
|
|
cong (plus p) prf
|
|
|
|
||| If p is NOT a factor of n, then it also is NOT a factor of (n + p).
|
|
export
|
|
plusDivisorNeitherFactor : NotFactor p n -> NotFactor p (n + p)
|
|
plusDivisorNeitherFactor (ZeroNotFactorS k) =
|
|
rewrite plusZeroRightNeutral k in
|
|
ZeroNotFactorS k
|
|
plusDivisorNeitherFactor (ProperRemExists q r remPrf) =
|
|
ProperRemExists (S q) r
|
|
rewrite multRightSuccPlus p q in
|
|
rewrite sym $ plusAssociative p (p * q) (S $ finToNat r) in
|
|
rewrite plusCommutative p ((p * q) + S (finToNat r)) in
|
|
rewrite remPrf in
|
|
Refl
|
|
|
|
||| If p is a factor of n, then it is also a factor of any multiply of n.
|
|
export
|
|
multNAlsoFactor : Factor p n -> (a : Nat) -> {auto aok : LTE 1 a} -> Factor p (n * a)
|
|
multNAlsoFactor _ Z = absurd $ succNotLTEzero aok
|
|
multNAlsoFactor (CofactorExists q prf) (S a) =
|
|
CofactorExists (q * S a)
|
|
rewrite prf in
|
|
sym $ multAssociative p q (S a)
|
|
|
|
||| If p is a factor of both n and m, then it is also a factor of their sum.
|
|
export
|
|
plusFactor : Factor p n -> Factor p m -> Factor p (n + m)
|
|
plusFactor (CofactorExists qn prfN) (CofactorExists qm prfM) =
|
|
rewrite prfN in
|
|
rewrite prfM in
|
|
rewrite sym $ multDistributesOverPlusRight p qn qm in
|
|
multFactor p (qn + qm)
|
|
|
|
||| If p is a factor of a sum (n + m) and a factor of n, then it is also
|
|
||| a factor of m. This could be expressed more naturally with minus, but
|
|
||| it would be more difficult to prove, since minus lacks certain properties
|
|
||| that one would expect from decent subtraction.
|
|
export
|
|
minusFactor : {a, b, p : Nat} -> Factor p (a + b) -> Factor p a -> Factor p b
|
|
minusFactor (CofactorExists qab prfAB) (CofactorExists qa prfA) =
|
|
CofactorExists (minus qab qa) (
|
|
rewrite multDistributesOverMinusRight p qab qa in
|
|
rewrite sym prfA in
|
|
rewrite sym prfAB in
|
|
replace {p = \x => b = minus (a + b) x} (plusZeroRightNeutral a)
|
|
rewrite plusMinusLeftCancel a b 0 in
|
|
rewrite minusZeroRight b in
|
|
Refl
|
|
)
|
|
|
|
||| A decision procedure for whether of not p is a factor of n.
|
|
export
|
|
decFactor : (n, d : Nat) -> DecFactor d n
|
|
decFactor Z Z = ItIsFactor $ factorReflexive Z
|
|
decFactor (S k) Z = ItIsNotFactor $ ZeroNotFactorS k
|
|
decFactor n (S d) =
|
|
let Fraction n (S d) q r prf = Data.Fin.Extra.divMod n (S d) in
|
|
case r of
|
|
FZ =>
|
|
let prf =
|
|
replace {p = \x => x = n} (plusZeroRightNeutral (q + (d * q))) $
|
|
replace {p = \x => x + 0 = n} (multCommutative q (S d)) prf
|
|
in
|
|
ItIsFactor $ CofactorExists q (sym prf)
|
|
|
|
(FS pr) =>
|
|
ItIsNotFactor $ ProperRemExists q pr (
|
|
rewrite multCommutative d q in
|
|
rewrite sym $ multRightSuccPlus q d in
|
|
sym prf
|
|
)
|
|
|
|
||| For all p greater than 1, if p is a factor of n, then it is NOT a factor
|
|
||| of (n + 1).
|
|
export
|
|
factNotSuccFact : {n, p : Nat} -> GT p 1 -> Factor p n -> NotFactor p (S n)
|
|
factNotSuccFact {p = Z} pGt1 (CofactorExists q prf) =
|
|
absurd $ succNotLTEzero pGt1
|
|
factNotSuccFact {p = S Z} pGt1 (CofactorExists q prf) =
|
|
absurd . succNotLTEzero $ fromLteSucc pGt1
|
|
factNotSuccFact {p = S (S k)} pGt1 (CofactorExists q prf) =
|
|
ProperRemExists q FZ (
|
|
rewrite sym prf in
|
|
rewrite plusCommutative n 1 in
|
|
Refl
|
|
)
|
|
|
|
||| The relation of common factor is symmetric, that is if p is a common factor
|
|
||| of n and m, then it is also a common factor if m and n.
|
|
export
|
|
commonFactorSym : CommonFactor p a b -> CommonFactor p b a
|
|
commonFactorSym (CommonFactorExists p pfa pfb) = CommonFactorExists p pfb pfa
|
|
|
|
||| The relation of greates common divisor is symmetric.
|
|
export
|
|
gcdSym : GCD p a b -> GCD p b a
|
|
gcdSym {a = Z} {b = Z} (MkGCD {notBothZero} _ _) impossible
|
|
gcdSym {a = S a} {b} (MkGCD {notBothZero = LeftIsNotZero} cf greatest) =
|
|
MkGCD {notBothZero = RightIsNotZero} (commonFactorSym cf) $
|
|
\q, cf => greatest q (commonFactorSym cf)
|
|
gcdSym {a} {b = S b} (MkGCD {notBothZero = RightIsNotZero} cf greatest) =
|
|
MkGCD {notBothZero = LeftIsNotZero} (commonFactorSym cf) $
|
|
\q, cf => greatest q (commonFactorSym cf)
|
|
|
|
||| If p is a common factor of a and b, then it is also a factor of their GCD.
|
|
||| This actually follows directly from the definition of GCD.
|
|
export
|
|
commonFactorAlsoFactorOfGCD : {p : Nat} -> Factor p a -> Factor p b -> GCD q a b -> Factor p q
|
|
commonFactorAlsoFactorOfGCD pfa pfb (MkGCD _ greatest) =
|
|
greatest p (CommonFactorExists p pfa pfb)
|
|
|
|
|
|
||| 1 is a common factor of any pair of natural numbers.
|
|
export
|
|
oneCommonFactor : (a, b : Nat) -> CommonFactor 1 a b
|
|
oneCommonFactor a b = CommonFactorExists 1
|
|
(CofactorExists a (rewrite plusZeroRightNeutral a in Refl))
|
|
(CofactorExists b (rewrite plusZeroRightNeutral b in Refl))
|
|
|
|
||| Any natural number is a common factor of itself and itself.
|
|
export
|
|
selfIsCommonFactor : (a : Nat) -> {auto ok : LTE 1 a} -> CommonFactor a a a
|
|
selfIsCommonFactor Z = absurd $ succNotLTEzero ok
|
|
selfIsCommonFactor (S k) = CommonFactorExists (S k) (factorReflexive $ S k) (factorReflexive $ S k)
|
|
|
|
|
|
-- Some helpers for the gcd function.
|
|
data Search : Type where
|
|
SearchArgs : (a, b : Nat) -> LTE b a -> {auto bNonZero : LTE 1 b} -> Search
|
|
|
|
left : Search -> Nat
|
|
left (SearchArgs l _ _) = l
|
|
|
|
right : Search -> Nat
|
|
right (SearchArgs _ r _) = r
|
|
|
|
Sized Search where
|
|
size (SearchArgs a b _) = a + b
|
|
|
|
notLteAndGt : (a, b : Nat) -> LTE a b -> GT a b -> Void
|
|
notLteAndGt Z b aLteB aGtB = succNotLTEzero aGtB
|
|
notLteAndGt (S k) Z aLteB aGtB = succNotLTEzero aLteB
|
|
notLteAndGt (S k) (S j) aLteB aGtB = notLteAndGt k j (fromLteSucc aLteB) (fromLteSucc aGtB)
|
|
|
|
gcd_step : (x : Search) ->
|
|
(rec : (y : Search) -> Smaller y x -> (f : Nat ** GCD f (left y) (right y))) ->
|
|
(f : Nat ** GCD f (left x) (right x))
|
|
gcd_step (SearchArgs Z _ bLteA {bNonZero}) _ = absurd . succNotLTEzero $ lteTransitive bNonZero bLteA
|
|
gcd_step (SearchArgs _ Z _ {bNonZero}) _ = absurd $ succNotLTEzero bNonZero
|
|
gcd_step (SearchArgs (S a) (S b) bLteA {bNonZero}) rec = case divMod (S a) (S b) of
|
|
Fraction (S a) (S b) q FZ prf =>
|
|
let sbIsFactor = the (S a = plus q (mult b q))
|
|
rewrite multCommutative b q in
|
|
rewrite sym $ multRightSuccPlus q b in
|
|
replace {p = \x => S a = x} (plusZeroRightNeutral (q * S b)) $ sym prf
|
|
skDividesA = CofactorExists q sbIsFactor
|
|
skDividesB = factorReflexive (S b)
|
|
greatest = the
|
|
((q' : Nat) -> CommonFactor q' (S a) (S b) -> Factor q' (S b))
|
|
(\q', (CommonFactorExists q' _ qfb) => qfb)
|
|
in
|
|
(S b ** MkGCD (CommonFactorExists (S b) skDividesA skDividesB) greatest)
|
|
|
|
Fraction (S a) (S b) q (FS r) prf =>
|
|
let rLtSb = lteSuccRight $ elemSmallerThanBound r
|
|
qGt1 = the (LTE 1 q) $ case q of
|
|
Z => absurd . notLteAndGt (S $ finToNat r) b (elemSmallerThanBound r) $
|
|
replace {p = LTE (S b)} (sym prf) bLteA
|
|
(S k) => LTESucc LTEZero
|
|
smaller = the (LTE (S (S (plus b (S (finToNat r))))) (S (plus a (S b)))) $
|
|
rewrite plusCommutative a (S b) in
|
|
LTESucc . LTESucc . plusLteLeft b . fromLteSucc $ lteTransitive (elemSmallerThanBound $ FS r) bLteA
|
|
(f ** MkGCD (CommonFactorExists f prfSb prfRem) greatestSbSr) =
|
|
rec (SearchArgs (S b) (S $ finToNat r) rLtSb) smaller
|
|
prfSa = the (Factor f (S a)) $
|
|
rewrite sym prf in
|
|
rewrite multCommutative q (S b) in
|
|
plusFactor (multNAlsoFactor prfSb q) prfRem
|
|
greatest = the
|
|
((q' : Nat) -> CommonFactor q' (S a) (S b) -> Factor q' f)
|
|
(\q', (CommonFactorExists q' qfa qfb) =>
|
|
let sbfqSb =
|
|
the (Factor (S b) (q * S b)) $
|
|
rewrite multCommutative q (S b) in
|
|
multFactor (S b) q
|
|
rightPrf = minusFactor {a = q * S b} {b = S (finToNat r)}
|
|
(rewrite prf in qfa)
|
|
(factorTransitive q' (S b) (q * S b) qfb sbfqSb)
|
|
in
|
|
greatestSbSr q' (CommonFactorExists q' qfb rightPrf)
|
|
)
|
|
in
|
|
(f ** MkGCD (CommonFactorExists f prfSa prfSb) greatest)
|
|
|
|
||| An implementation of Euclidean Algorithm for computing greatest common
|
|
||| divisors. It is proven correct and total; returns a proof that computed
|
|
||| number actually IS the GCD. Unfortunately it's very slow, so improvements
|
|
||| in terms of efficiency would be welcome.
|
|
export
|
|
gcd : (a, b : Nat) -> {auto ok : NotBothZero a b} -> (f : Nat ** GCD f a b)
|
|
gcd Z Z impossible
|
|
gcd Z b =
|
|
(b ** MkGCD (CommonFactorExists b (anythingFactorZero b) (factorReflexive b)) $
|
|
\q, (CommonFactorExists q _ prf) => prf
|
|
)
|
|
gcd a Z =
|
|
(a ** MkGCD (CommonFactorExists a (factorReflexive a) (anythingFactorZero a)) $
|
|
\q, (CommonFactorExists q prf _) => prf
|
|
)
|
|
gcd (S a) (S b) with (cmp (S a) (S b))
|
|
gcd (S (b + S d)) (S b) | CmpGT d =
|
|
let aGtB = the (LTE (S b) (S (b + S d))) $
|
|
rewrite sym $ plusSuccRightSucc b d in
|
|
LTESucc . lteSuccRight $ lteAddRight b
|
|
in
|
|
sizeInd gcd_step $ SearchArgs (S (b + S d)) (S b) aGtB
|
|
gcd (S a) (S a) | CmpEQ =
|
|
let greatest = the
|
|
((q : Nat) -> CommonFactor q (S a) (S a) -> Factor q (S a))
|
|
(\q, (CommonFactorExists q qfa _) => qfa)
|
|
in
|
|
(S a ** MkGCD (selfIsCommonFactor (S a)) greatest)
|
|
gcd (S a) (S (a + S d)) | CmpLT d =
|
|
let aGtB = the (LTE (S a) (S (plus a (S d)))) $
|
|
rewrite sym $ plusSuccRightSucc a d in
|
|
LTESucc . lteSuccRight $ lteAddRight a
|
|
(f ** MkGCD prf greatest) = sizeInd gcd_step $ SearchArgs (S (a + S d)) (S a) aGtB
|
|
in
|
|
(f ** MkGCD (commonFactorSym prf) (\q, cf => greatest q $ commonFactorSym cf))
|
|
|
|
||| For every two natural numbers there is a unique greatest common divisor.
|
|
export
|
|
gcdUnique : {a, b, p, q : Nat} -> GCD p a b -> GCD q a b -> p = q
|
|
gcdUnique (MkGCD pCFab greatestP) (MkGCD qCFab greatestQ) =
|
|
factorAntisymmetric (greatestQ p pCFab) (greatestP q qCFab)
|
|
|
|
|
|
divByGcdHelper : (a, b, c : Nat) -> GCD (S a) (S a * S b) (S a * c) -> GCD 1 (S b) c
|
|
divByGcdHelper a b c (MkGCD _ greatest) =
|
|
MkGCD (CommonFactorExists 1 (oneIsFactor (S b)) (oneIsFactor c)) $
|
|
\q, (CommonFactorExists q (CofactorExists qb prfQB) (CofactorExists qc prfQC)) =>
|
|
let qFab = CofactorExists {n = S a * S b} {p = q * S a} qb
|
|
rewrite multCommutative q (S a) in
|
|
rewrite sym $ multAssociative (S a) q qb in
|
|
rewrite sym $ prfQB in
|
|
Refl
|
|
qFac = CofactorExists {n = S a * c} {p = q * S a} qc
|
|
rewrite multCommutative q (S a) in
|
|
rewrite sym $ multAssociative (S a) q qc in
|
|
rewrite sym $ prfQC in
|
|
Refl
|
|
CofactorExists f prfQAfA =
|
|
greatest (q * S a) (CommonFactorExists (q * S a) qFab qFac)
|
|
qf1 = multOneSoleNeutral a (f * q)
|
|
rewrite multCommutative f q in
|
|
rewrite multAssociative (S a) q f in
|
|
rewrite sym $ multCommutative q (S a) in
|
|
prfQAfA
|
|
in
|
|
CofactorExists f
|
|
rewrite multCommutative q f in
|
|
sym qf1
|
|
|
|
|
|
||| For every two natural numbers, if we divide both of them by their GCD,
|
|
||| the GCD of resulting numbers will always be 1.
|
|
export
|
|
divByGcdGcdOne : {a, b, c : Nat} -> GCD a (a * b) (a * c) -> GCD 1 b c
|
|
divByGcdGcdOne {a = Z} (MkGCD {notBothZero = LeftIsNotZero} _ _) impossible
|
|
divByGcdGcdOne {a = Z} (MkGCD {notBothZero = RightIsNotZero} _ _) impossible
|
|
divByGcdGcdOne {a = S a} {b = Z} {c = Z} (MkGCD {notBothZero} _ _) =
|
|
case replace {p = \x => NotBothZero x x} (multZeroRightZero (S a)) notBothZero of
|
|
LeftIsNotZero impossible
|
|
RightIsNotZero impossible
|
|
divByGcdGcdOne {a = S a} {b = Z} {c = S c} gcdPrf@(MkGCD {notBothZero} _ _) =
|
|
case replace {p = \x => NotBothZero x (S a * S c)} (multZeroRightZero (S a)) notBothZero of
|
|
LeftIsNotZero impossible
|
|
RightIsNotZero => gcdSym $ divByGcdHelper a c Z $ gcdSym gcdPrf
|
|
divByGcdGcdOne {a = S a} {b = S b} {c = Z} gcdPrf@(MkGCD {notBothZero} _ _) =
|
|
case replace {p = \x => NotBothZero (S a * S b) x} (multZeroRightZero (S a)) notBothZero of
|
|
RightIsNotZero impossible
|
|
LeftIsNotZero => divByGcdHelper a b Z gcdPrf
|
|
divByGcdGcdOne {a = S a} {b = S b} {c = S c} gcdPrf =
|
|
divByGcdHelper a b (S c) gcdPrf
|