mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-21 02:31:50 +03:00
7f9db70e15
* Add PreorderReasoning comforts * Drop interface approach in favour of computation * Update libs/base/Syntax/PreorderReasoning.idr --------- Co-authored-by: Cristóvão Gomes Ferreira <crisoagf@melo-gibson> Co-authored-by: Ohad Kammar <ohad.kammar@gmail.com> Co-authored-by: Guillaume Allais <guillaume.allais@ens-lyon.org> CI integration co-authored-by: @stefan-hoeck
60 lines
1.6 KiB
Idris
60 lines
1.6 KiB
Idris
||| Until Idris2 starts supporting the 'syntax' keyword, here's a
|
|
||| poor-man's equational reasoning
|
|
module Syntax.PreorderReasoning
|
|
|
|
infixl 0 ~~,~=
|
|
prefix 1 |~
|
|
infix 1 ...,..<,..>,.=.,.=<,.=>
|
|
|
|
|||Slightly nicer syntax for justifying equations:
|
|
|||```
|
|
||| |~ a
|
|
||| ~~ b ...( justification )
|
|
|||```
|
|
|||and we can think of the `...( justification )` as ASCII art for a thought bubble.
|
|
public export
|
|
data Step : a -> b -> Type where
|
|
(...) : (0 y : a) -> (0 step : x ~=~ y) -> Step x y
|
|
|
|
public export
|
|
data FastDerivation : (x : a) -> (y : b) -> Type where
|
|
(|~) : (0 x : a) -> FastDerivation x x
|
|
(~~) : FastDerivation x y -> (step : Step y z) -> FastDerivation x z
|
|
|
|
public export
|
|
Calc : {0 x : a} -> {0 y : b} -> FastDerivation x y -> x ~=~ y
|
|
Calc (|~ x) = Refl
|
|
Calc ((~~) der (_ ...(Refl))) = Calc der
|
|
|
|
{- -- requires import Data.Nat
|
|
0
|
|
example : (x : Nat) -> (x + 1) + 0 = 1 + x
|
|
example x =
|
|
Calc $
|
|
|~ (x + 1) + 0
|
|
~~ x+1 ...( plusZeroRightNeutral $ x + 1 )
|
|
~~ 1+x ...( plusCommutative x 1 )
|
|
-}
|
|
|
|
-- Re-implement `prelude.Builtins.sym` to enable bootstrapping
|
|
-- Remove after next release
|
|
%inline
|
|
public export
|
|
symHet : (0 rule : x ~=~ y) -> y ~=~ x
|
|
symHet Refl = Refl
|
|
|
|
-- Smart constructors
|
|
public export
|
|
(..<) : (0 y : a) -> {0 x : b} ->
|
|
y ~=~ x -> Step x y
|
|
(y ..<(prf)) {x} = (y ...(symHet prf)) -- Use `sym` from next release
|
|
|
|
public export
|
|
(..>) : (0 y : a) -> (0 step : x ~=~ y) -> Step x y
|
|
(..>) = (...)
|
|
|
|
||| Use a judgemental equality but is not trivial to the reader.
|
|
public export
|
|
(~=) : FastDerivation x y -> (0 z : dom) -> {auto xEqy : y = z} -> FastDerivation x z
|
|
(~=) der y {xEqy = Refl} = der ~~ y ... Refl
|