mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-18 00:31:57 +03:00
3b0496b8ab
I didn't add any export labels because none of this is actually useful for anything, but the proofs are cool.
57 lines
1.5 KiB
Idris
57 lines
1.5 KiB
Idris
||| Properties of factorial functions
|
|
module Data.Nat.Fact
|
|
|
|
import Data.Nat
|
|
|
|
%default total
|
|
|
|
||| Recursive definition of factorial.
|
|
factRec : Nat -> Nat
|
|
factRec Z = 1
|
|
factRec (S k) = (S k) * factRec k
|
|
|
|
||| Tail-recursive accumulator for factItr.
|
|
factAcc : Nat -> Nat -> Nat
|
|
factAcc Z acc = acc
|
|
factAcc (S k) acc = factAcc k $ (S k) * acc
|
|
|
|
||| Iterative definition of factorial.
|
|
factItr : Nat -> Nat
|
|
factItr n = factAcc n 1
|
|
|
|
----------------------------------------
|
|
|
|
||| Multiplicand-shuffling lemma.
|
|
multShuffle : (a, b, c : Nat) -> a * (b * c) = b * (a * c)
|
|
multShuffle a b c =
|
|
rewrite multAssociative a b c in
|
|
rewrite multCommutative a b in
|
|
sym $ multAssociative b a c
|
|
|
|
||| Multiplication of the accumulator.
|
|
factAccMult : (a, b, c : Nat) ->
|
|
a * factAcc b c = factAcc b (a * c)
|
|
factAccMult _ Z _ = Refl
|
|
factAccMult a (S k) c =
|
|
rewrite factAccMult a k (S k * c) in
|
|
rewrite multShuffle a (S k) c in
|
|
Refl
|
|
|
|
||| Addition of accumulators.
|
|
factAccPlus : (a, b, c : Nat) ->
|
|
factAcc a b + factAcc a c = factAcc a (b + c)
|
|
factAccPlus Z _ _ = Refl
|
|
factAccPlus (S k) b c =
|
|
rewrite factAccPlus k (S k * b) (S k * c) in
|
|
rewrite sym $ multDistributesOverPlusRight (S k) b c in
|
|
Refl
|
|
|
|
||| The recursive and iterative definitions are the equivalent.
|
|
factRecItr : (n : Nat) -> factRec n = factItr n
|
|
factRecItr Z = Refl
|
|
factRecItr (S k) =
|
|
rewrite factRecItr k in
|
|
rewrite factAccMult k k 1 in
|
|
rewrite multOneRightNeutral k in
|
|
factAccPlus k 1 k
|