mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-17 08:11:45 +03:00
aa72203fc8
Co-authored-by: Ohad Kammar <ohad.kammar@ed.ac.uk> Co-authored-by: G. Allais <guillaume.allais@ens-lyon.org>
216 lines
7.1 KiB
Idris
216 lines
7.1 KiB
Idris
||| The telescope data structures.
|
|
|||
|
|
||| Indexing telescopes by their length (hopefully) helps inform the
|
|
||| type-checker during inference.
|
|
module Data.Telescope.Telescope
|
|
|
|
import Data.DPair
|
|
import Data.Nat
|
|
import Data.Fin
|
|
import Syntax.PreorderReasoning
|
|
|
|
%default total
|
|
|
|
public export
|
|
plusAcc : Nat -> Nat -> Nat
|
|
plusAcc Z n = n
|
|
plusAcc (S m) n = plusAcc m (S n)
|
|
|
|
export
|
|
plusAccIsPlus : (m, n : Nat) -> (m + n) === plusAcc m n
|
|
plusAccIsPlus Z n = Refl
|
|
plusAccIsPlus (S m) n =
|
|
rewrite plusSuccRightSucc m n in
|
|
plusAccIsPlus m (S n)
|
|
|
|
public export
|
|
plusAccZeroRightNeutral : (m : Nat) -> plusAcc m 0 === m
|
|
plusAccZeroRightNeutral m =
|
|
rewrite sym (plusAccIsPlus m 0) in
|
|
rewrite plusZeroRightNeutral m in
|
|
Refl
|
|
|
|
|
|
infixl 4 -.
|
|
infixr 4 .-
|
|
|
|
namespace Left
|
|
|
|
mutual
|
|
||| A left-nested sequence of dependent types
|
|
public export
|
|
data Telescope : (k : Nat) -> Type where
|
|
Nil : Telescope 0
|
|
(-.) : (gamma : Left.Telescope k) -> (ty : TypeIn gamma) -> Telescope (S k)
|
|
|
|
||| A type with dependencies in the given context
|
|
public export
|
|
TypeIn : Left.Telescope k -> Type
|
|
TypeIn gamma = (env : Environment gamma) -> Type
|
|
|
|
||| A tuple of values of each type in the telescope
|
|
public export
|
|
Environment : Left.Telescope k -> Type
|
|
Environment [] = ()
|
|
Environment (gamma -. ty) = (env : Environment gamma ** ty env)
|
|
|
|
export
|
|
weakenTypeIn : TypeIn gamma -> TypeIn (gamma -. sigma)
|
|
weakenTypeIn ty env = ty (fst env)
|
|
|
|
public export
|
|
uncons : (gamma : Telescope (S k)) ->
|
|
(ty : Type
|
|
** delta : (ty -> Telescope k)
|
|
** (v : ty) -> Environment (delta v) -> Environment gamma)
|
|
uncons ([] -. ty) = (ty () ** const [] ** \ v, _ => (() ** v))
|
|
uncons (gamma@(_ -. _) -. ty) =
|
|
let (sigma ** delta ** left) = uncons gamma in
|
|
(sigma ** (\ v => delta v -. (\ env => ty (left v env)))
|
|
** (\ v, (env ** w) => (left v env ** w)))
|
|
|
|
public export
|
|
(++) : {n : Nat} -> (gamma : Left.Telescope m) -> (Environment gamma -> Left.Telescope n) ->
|
|
Telescope (plusAcc n m)
|
|
(++) {n = Z} gamma delta = gamma
|
|
(++) {n = S n} gamma delta = (gamma -. sigma) ++ uncurry theta where
|
|
|
|
sigma : Environment gamma -> Type
|
|
sigma env = fst (uncons (delta env))
|
|
|
|
theta : (env : Environment gamma) -> sigma env -> Telescope n
|
|
theta env val with (uncons (delta env))
|
|
theta env val | (sig ** omega ** _) = omega val
|
|
|
|
public export
|
|
cons : {k : Nat} -> (ty : Type) -> (ty -> Left.Telescope k) -> Left.Telescope (S k)
|
|
cons sigma gamma =
|
|
rewrite plusCommutative 1 k in
|
|
rewrite plusAccIsPlus k 1 in
|
|
([] -. const sigma) ++ (gamma . snd)
|
|
|
|
||| A position between the variables of a telescope, counting from the _end_:
|
|
||| Telescope: Nil -. ty1 -. ... -. tyn
|
|
||| Positions: ^k ^k-1 ^k-2 ^1 ^0
|
|
public export
|
|
Position : {k : Nat} -> Telescope k -> Type
|
|
Position {k} _ = Fin (S k)
|
|
|
|
||| The position at the beginning of the telescope
|
|
public export
|
|
start : {k : Nat} -> (gamma : Telescope k) -> Position gamma
|
|
start {k} gamma = last
|
|
|
|
namespace Right
|
|
|
|
mutual
|
|
||| A right-nested sequence of dependent types
|
|
public export
|
|
data Telescope : (k : Nat) -> Type where
|
|
Nil : Telescope 0
|
|
(.-) : (ty : Type) -> (gamma : ty -> Right.Telescope k) -> Telescope (S k)
|
|
|
|
||| A tuple of values of each type in the telescope
|
|
public export
|
|
Environment : Right.Telescope k -> Type
|
|
Environment [] = ()
|
|
Environment (ty .- gamma) = (v : ty ** Environment (gamma v))
|
|
|
|
export
|
|
empty : (0 gamma : Right.Telescope Z) -> Environment gamma
|
|
empty {gamma = []} = ()
|
|
|
|
export
|
|
snoc : (gamma : Right.Telescope k) -> (Environment gamma -> Type) -> Right.Telescope (S k)
|
|
snoc [] tau = tau () .- const []
|
|
snoc (sigma .- gamma) tau = sigma .- \ v => snoc (gamma v) (\ env => tau (v ** env))
|
|
|
|
export
|
|
unsnoc : {k : Nat} -> (gamma : Right.Telescope (S k)) ->
|
|
(delta : Right.Telescope k
|
|
** sigma : (Environment delta -> Type)
|
|
** (env : Environment delta) -> sigma env -> Environment gamma)
|
|
unsnoc {k = Z} (sigma .- gamma) = ([] ** const sigma ** \ (), v => (v ** empty (gamma v)))
|
|
unsnoc {k = S k} (sigma .- gamma)
|
|
= (sigma .- delta ** uncurry tau ** \ (v ** env) => transp v env) where
|
|
|
|
delta : sigma -> Right.Telescope k
|
|
delta v = fst (unsnoc (gamma v))
|
|
|
|
tau : (v : sigma) -> Environment (delta v) -> Type
|
|
tau v = fst (snd (unsnoc (gamma v)))
|
|
|
|
transp : (v : sigma) -> (env : Environment (delta v)) -> tau v env -> Environment (sigma .- gamma)
|
|
transp v env w = (v ** (snd (snd (unsnoc (gamma v))) env w))
|
|
|
|
export
|
|
(++) : (gamma : Right.Telescope m) -> (Environment gamma -> Right.Telescope n) -> Right.Telescope (m + n)
|
|
[] ++ delta = delta ()
|
|
(sigma .- gamma) ++ delta = sigma .- (\ v => (gamma v ++ (\ env => delta (v ** env))))
|
|
|
|
export
|
|
split : (gamma : Right.Telescope m) -> (delta : Environment gamma -> Right.Telescope n) ->
|
|
Environment (gamma ++ delta) ->
|
|
(env : Environment gamma ** Environment (delta env))
|
|
split [] delta env = (() ** env)
|
|
split (sigma .- gamma) delta (v ** env) =
|
|
let (env1 ** env2) = split (gamma v) (\env => delta (v ** env)) env in
|
|
((v ** env1) ** env2)
|
|
|
|
namespace Tree
|
|
|
|
infixl 4 ++
|
|
|
|
mutual
|
|
||| A tree of dependent types
|
|
public export
|
|
data Telescope : (k : Nat) -> Type where
|
|
Nil : Telescope 0
|
|
Elt : Type -> Telescope 1
|
|
(++) : (gamma : Tree.Telescope m) ->
|
|
(delta : Tree.Environment gamma -> Tree.Telescope n) ->
|
|
Telescope (m + n)
|
|
|
|
||| A tuple of values of each type in the telescope
|
|
public export
|
|
Environment : Tree.Telescope k -> Type
|
|
Environment [] = ()
|
|
Environment (Elt t) = t
|
|
Environment (gamma ++ delta) = (env : Environment gamma ** Environment (delta env))
|
|
|
|
export
|
|
concat : (gamma : Tree.Telescope k) -> (delta : Right.Telescope k ** Environment delta -> Environment gamma)
|
|
concat Nil = ([] ** id)
|
|
concat (Elt t) = ((t .- const []) ** fst)
|
|
concat (gamma ++ delta) =
|
|
let (thetaL ** transpL) = concat gamma in
|
|
((thetaL ++ \ envL => fst (concat (delta (transpL envL))))
|
|
** \ env =>
|
|
let (env1 ** env2) = split thetaL (\ envL => fst (concat (delta (transpL envL)))) env in
|
|
(transpL env1 ** snd (concat (delta (transpL env1))) env2)
|
|
)
|
|
|
|
infix 5 <++>
|
|
|
|
public export
|
|
(<++>) : (gamma : Left.Telescope m) -> (Environment gamma -> Right.Telescope n) -> Right.Telescope (plusAcc m n)
|
|
[] <++> delta = delta ()
|
|
(gamma -. sigma ) <++> delta = gamma <++> (\ env => sigma env .- \ v => delta (env ** v))
|
|
|
|
infix 5 >++<
|
|
|
|
(>++<) : {m, n : Nat} -> (gamma : Right.Telescope m) -> (Environment gamma -> Left.Telescope n) ->
|
|
Left.Telescope (plusAcc m n)
|
|
[] >++< delta = delta ()
|
|
gamma@(_ .- _) >++< delta =
|
|
let (gamma ** sigma ** transp) = unsnoc gamma in
|
|
gamma >++< \ env => (cons (sigma env) (\ v => delta (transp env v)))
|
|
|
|
export
|
|
leftToRight : Left.Telescope m -> Right.Telescope m
|
|
leftToRight gamma = rewrite sym (plusAccZeroRightNeutral m) in (gamma <++> const [])
|
|
|
|
export
|
|
rightToLeft : {m : Nat} -> Right.Telescope m -> Left.Telescope m
|
|
rightToLeft gamma = rewrite sym (plusAccZeroRightNeutral m) in (gamma >++< const [])
|