Idris2/libs/contrib/Data/Nat/Properties.idr
Guillaume ALLAIS 5af1efb56e [ refactor ] introduce NonZero
This has a much better behaviour with respect to proof search and
the coverage checker realising we don't need to consider the Z case
than the `Not (x = Z)` we used earlier.
2021-03-31 17:59:58 +01:00

30 lines
1023 B
Idris

||| Additional properties/lemmata of Nats
module Data.Nat.Properties
import Data.Nat
import Syntax.PreorderReasoning
%default total
export
unfoldDouble : {0 n : Nat} -> (2 * n) === (n + n)
unfoldDouble = irrelevantEq $ cong (n +) (plusZeroRightNeutral _)
export
unfoldDoubleS : {0 n : Nat} -> (2 * S n) === (2 + 2 * n)
unfoldDoubleS = irrelevantEq $ Calc $
|~ 2 * S n
~~ S n + S n ...( unfoldDouble {n = S n} )
~~ 2 + (n + n) ...( sym (plusSuccRightSucc (S n) n) )
~~ 2 + 2 * n ...( cong (2 +) (sym unfoldDouble) )
export
multRightCancel : (a,b,r : Nat) -> (0 _ : NonZero r) -> a*r = b*r -> a = b
multRightCancel a b 0 r_nz ar_eq_br = void (absurd r_nz)
multRightCancel 0 0 r@(S predr) r_nz ar_eq_br = Refl
multRightCancel 0 (S b) r@(S predr) r_nz ar_eq_br impossible
multRightCancel (S a) 0 r@(S predr) r_nz ar_eq_br impossible
multRightCancel (S a) (S b) r@(S predr) r_nz ar_eq_br =
cong S $ multRightCancel a b r r_nz
$ plusLeftCancel r (a*r) (b*r) ar_eq_br