mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-11-28 19:13:02 +03:00
21c6f4fb79
* [ breaking ] remove parsing of dangling binders It used to be the case that ``` ID : Type -> Type ID a = a test : ID (a : Type) -> a -> a test = \ a, x => x ``` and ``` head : List $ a -> Maybe a head [] = Nothing head (x :: _) = Just x ``` were accepted but these are now rejected because: * `ID (a : Type) -> a -> a` is parsed as `(ID (a : Type)) -> a -> a` * `List $ a -> Maybe a` is parsed as `List (a -> Maybe a)` Similarly if you want to use a lambda / rewrite / let expression as part of the last argument of an application, the use of `$` or parens is now mandatory. This should hopefully allow us to make progress on #1703
277 lines
11 KiB
Idris
277 lines
11 KiB
Idris
||| A segment is a compositional fragment of a telescope.
|
|
||| A key difference is that segments are right-nested, whereas
|
|
||| telescopes are left nested.
|
|
||| So telescopes are convenient for well-bracketing dependencies,
|
|
||| but segments are convenient for processing telescopes from left
|
|
||| to right.
|
|
|||
|
|
||| As with telescopes, indexing segments by their length (hopefully)
|
|
||| helps the type-checker infer stuff.
|
|
module Data.Telescope.Segment
|
|
|
|
import Data.Telescope.Telescope
|
|
|
|
import Syntax.PreorderReasoning
|
|
import Data.Fin
|
|
import Data.Nat
|
|
import Data.DPair
|
|
|
|
%default total
|
|
|
|
||| A segment is a compositional fragment of a telescope, indexed by
|
|
||| the segment's length.
|
|
public export
|
|
data Segment : (n : Nat) -> Left.Telescope k -> Type where
|
|
Nil : Segment 0 gamma
|
|
(::) : (ty : TypeIn gamma) -> (delta : Segment n (gamma -. ty)) -> Segment (S n) gamma
|
|
|
|
||| A segment of size `n` indexed by `gamma` can be seen as the tabulation of a
|
|
||| function that turns environments for `gamma` into telescopes of size `n`.
|
|
public export
|
|
tabulate : (n : Nat) -> (Left.Environment gamma -> Left.Telescope n) -> Segment n gamma
|
|
tabulate Z tel = []
|
|
tabulate (S n) tel = (sigma :: tabulate n (uncurry delta)) where
|
|
|
|
sigma : TypeIn gamma
|
|
sigma env = fst (uncons (tel env))
|
|
|
|
delta : (env : Environment gamma) -> sigma env -> Left.Telescope n
|
|
delta env v with (uncons (tel env))
|
|
delta env v | (sig ** delt ** _) = delt v
|
|
|
|
||| Any telescope is a segment in the empty telescope. It amounts to looking
|
|
||| at it left-to-right instead of right-to-left.
|
|
public export
|
|
fromTelescope : {k : Nat} -> Left.Telescope k -> Segment k []
|
|
fromTelescope gamma = tabulate _ (const gamma)
|
|
|
|
||| Conversely, a segment of size `n` in telescope `gamma` can be seen as a function
|
|
||| from environments for `gamma` to telescopes of size `n`.
|
|
public export
|
|
untabulate : {n : Nat} -> Segment n gamma -> (Left.Environment gamma -> Left.Telescope n)
|
|
untabulate [] _ = []
|
|
untabulate (ty :: delta) env = cons (ty env) (untabulate delta . (\ v => (env ** v)))
|
|
|
|
||| Any segment in the empty telescope correspond to a telescope.
|
|
public export
|
|
toTelescope : {k : Nat} -> Segment k [] -> Left.Telescope k
|
|
toTelescope seg = untabulate seg ()
|
|
|
|
%name Segment delta,delta',delta1,delta2
|
|
|
|
infixl 3 |++, :++
|
|
|
|
||| This lemma comes up all the time when mixing induction on Nat with
|
|
||| indexing modulo addition. An alternative is to use something like
|
|
||| frex.
|
|
succLemma : (lft, rgt : Nat) -> lft + (S rgt) = S (lft + rgt)
|
|
succLemma x y = Calc $
|
|
|~ x + (1 + y)
|
|
~~ (x + 1)+ y ...(plusAssociative x 1 y)
|
|
~~ (1 + x)+ y ...(cong (+y) $ plusCommutative x 1)
|
|
~~ 1 + (x + y) ...(sym $ plusAssociative 1 x y)
|
|
|
|
-- Should go somehwere in stdlib
|
|
public export
|
|
keep : (0 prf : a ~=~ b) -> a ~=~ b
|
|
keep Refl = Refl
|
|
|
|
-- Keeping the `Nat` argument relevant, should (hopefully) only
|
|
-- case-split on it and not the environment unnecessarily, allowing us
|
|
-- to calculate, so long as we know the 'shape' of the Segment.
|
|
--
|
|
-- This should work in theory, I don't think it actually works for
|
|
-- Idris at the moment. Might work in Agda?
|
|
|
|
||| Segments act on telescope from the right.
|
|
public export
|
|
(|++) : (gamma : Left.Telescope k) -> {n : Nat} -> (delta : Segment n gamma) -> Left.Telescope (n + k)
|
|
(|++) gamma {n = 0} delta = gamma
|
|
(|++) gamma {n=S n} (ty :: delta) = rewrite sym $ succLemma n k in
|
|
gamma -. ty |++ delta
|
|
|
|
||| Segments form a kind of an indexed monoid w.r.t. the action `(|++)`
|
|
public export
|
|
(++) : {gamma : Left.Telescope k}
|
|
-> {n : Nat}
|
|
-> (lft : Segment n gamma )
|
|
-> (rgt : Segment m (gamma |++ lft))
|
|
-> Segment (n + m) gamma
|
|
(++) {n = 0 } delta rgt = rgt
|
|
(++) {n = S n} (ty :: lft) rgt = ty :: lft ++ rewrite succLemma n k in
|
|
rgt
|
|
-- This monoid does act on telescopes:
|
|
export
|
|
actSegmentAssociative : (gamma : Left.Telescope k)
|
|
-> (lft : Segment n gamma)
|
|
-> (rgt : Segment m (gamma |++ lft))
|
|
-> (gamma |++ (lft ++ rgt)) ~=~ ((gamma |++ lft) |++ rgt)
|
|
actSegmentAssociative gamma {n = 0} [] rgt = Refl
|
|
actSegmentAssociative gamma {n = S n} (ty :: lft) rgt =
|
|
let rgt' : Segment {k = n + (S k)} m (gamma -. ty |++ lft)
|
|
rgt' = rewrite succLemma n k in
|
|
rgt
|
|
rgt_eq_rgt' : rgt ~=~ rgt'
|
|
rgt_eq_rgt' = rewrite succLemma n k in
|
|
Refl
|
|
in
|
|
rewrite sym $ succLemma (n + m) k in
|
|
rewrite sym $ succLemma n k in keep $ Calc $
|
|
|~ ((gamma -. ty) |++ (lft ++ rgt'))
|
|
~~ ((gamma -. ty |++ lft) |++ rgt')
|
|
...(actSegmentAssociative (gamma -. ty) lft rgt')
|
|
|
|
public export
|
|
weaken : {0 gamma : Left.Telescope k}
|
|
-> {delta : Segment n gamma} -> (sy : TypeIn gamma)
|
|
-> TypeIn (gamma |++ delta)
|
|
weaken {delta = [] } sy = sy
|
|
weaken {n = S n} {delta = ty :: delta} sy = rewrite sym $ succLemma n k in
|
|
weaken (weakenTypeIn sy)
|
|
|
|
public export
|
|
projection : {0 gamma : Left.Telescope k}
|
|
-> {n : Nat}
|
|
-> {0 delta : Segment n gamma}
|
|
-> Environment (gamma |++ delta)
|
|
-> Environment gamma
|
|
projection {n = 0 } {delta = [] } env = env
|
|
projection {n = S n} {delta = ty :: delta} env
|
|
= let (env' ** _) = projection {n} {delta}
|
|
$ rewrite succLemma n k in env
|
|
in env'
|
|
|
|
infixl 4 .=
|
|
|
|
public export
|
|
data Environment : (env : Left.Environment gamma)
|
|
-> (delta : Segment n gamma) -> Type where
|
|
Empty : Environment env []
|
|
(.=) : {0 gamma : Left.Telescope k} -> {0 ty : TypeIn gamma}
|
|
-> {0 env : Left.Environment gamma}
|
|
-> {0 delta : Segment n (gamma -. ty)}
|
|
|
|
-> (x : ty env) -> (xs : Segment.Environment (env ** x) delta)
|
|
-> Environment env (ty :: delta)
|
|
|
|
public export
|
|
(:++) : {0 gamma : Left.Telescope k} -> {0 delta : Segment n gamma}
|
|
-> (env : Left.Environment gamma)
|
|
-> (ext : Segment.Environment env delta)
|
|
-> Left.Environment (gamma |++ delta)
|
|
(:++) env Empty = env
|
|
(:++) {n = S n} env (x .= xs) = rewrite sym $ succLemma n k in
|
|
(env ** x) :++ xs
|
|
|
|
-- This is too nasty for now, leave to later
|
|
{-
|
|
public export
|
|
break : {0 k : Nat} -> (gamma : Telescope k') -> (pos : Position gamma)
|
|
-> {auto 0 ford : k' = cast pos + k } -> Telescope k
|
|
break gamma FZ {ford = Refl} = gamma
|
|
break [] (FS pos) {ford = _ } impossible
|
|
break {k' = S k'} (gamma -. ty) (FS pos) {ford} = break gamma pos
|
|
{ford = Calc $
|
|
|~ k'
|
|
~~ cast pos + k ...(succInjective _ _ ford)}
|
|
|
|
-- Should go into Data.Fin
|
|
export
|
|
lastIsLast : {n : Nat} -> cast (last {n}) = n
|
|
lastIsLast {n = 0 } = Refl
|
|
lastIsLast {n = S n} = rewrite lastIsLast {n} in
|
|
Refl
|
|
|
|
public export
|
|
finComplement : {n : Nat} -> (i : Fin n) -> Fin n
|
|
finComplement FZ = last
|
|
finComplement (FS i) = weaken (finComplement i)
|
|
|
|
export
|
|
castNaturality : (i : Fin n) -> finToNat (weaken i) ~=~ finToNat i
|
|
castNaturality FZ = Refl
|
|
castNaturality (FS i) = rewrite castNaturality i in
|
|
Refl
|
|
|
|
export
|
|
finComplementSpec : (i : Fin (S n)) -> cast i + cast (finComplement i) = n
|
|
finComplementSpec FZ = keep lastIsLast
|
|
finComplementSpec {n = .(S n)} (FS i@ FZ ) = rewrite castNaturality (finComplement i) in
|
|
rewrite finComplementSpec i in
|
|
Refl
|
|
finComplementSpec {n = .(S n)} (FS i@(FS _)) = rewrite castNaturality (finComplement i) in
|
|
rewrite finComplementSpec i in
|
|
Refl
|
|
|
|
complementLastZero : (n : Nat) -> finComplement (last {n}) = FZ
|
|
complementLastZero n = finToNatInjective _ _ $ plusLeftCancel n _ _ $ Calc $
|
|
let n' : Nat
|
|
n' = cast $ finComplement $ last {n} in
|
|
|~ n + n'
|
|
~~ (finToNat $ last {n}) + n'
|
|
...(cong (+n') $ sym $ lastIsLast {n})
|
|
~~ n ...(finComplementSpec $ last {n})
|
|
~~ n + 0 ...(sym $ plusZeroRightNeutral n)
|
|
|
|
public export
|
|
breakOnto : {0 k,k' : Nat} -> (gamma : Telescope k) -> (pos : Position gamma)
|
|
-> (delta : Segment n gamma)
|
|
-> {auto 0 ford1 : k' === (finToNat $ finComplement pos) }
|
|
-> {default
|
|
-- disgusting, sorry
|
|
(replace {p = \u => k = finToNat pos + u}
|
|
(sym ford1)
|
|
(sym $ finComplementSpec pos))
|
|
0 ford2 : (k === ((finToNat pos) + k')) }
|
|
-> Segment (cast pos + n)
|
|
(break {k = k'}
|
|
gamma pos
|
|
{ford = ford2})
|
|
breakOnto gamma FZ delta {ford1 = Refl} {ford2} =
|
|
rewrite sym ford2 in
|
|
delta
|
|
breakOnto (gamma -. ty) (FS pos) delta {ford1 = Refl} {ford2} =
|
|
rewrite sym $ succLemma (cast pos) n in
|
|
rewrite castNaturality (finComplement pos) in
|
|
breakOnto gamma pos (ty :: delta)
|
|
|
|
uip : (prf1, prf2 : x ~=~ y) -> prf1 ~=~ prf2
|
|
uip Refl Refl = Refl
|
|
|
|
export
|
|
breakStartEmpty : (gamma : Telescope k')
|
|
-> {auto 0 ford1 : k = 0}
|
|
-> {auto 0 ford2 : k' = finToNat (start gamma) + k}
|
|
-> break {k} {k'} gamma (start gamma) {ford = ford2}
|
|
~=~ Telescope.Nil
|
|
breakStartEmpty [] {ford1 = Refl} {ford2 = Refl} = Refl
|
|
breakStartEmpty {k} {k' = S k'} {ford1} {ford2} (gamma -. ty) =
|
|
-- Yuck!
|
|
let 0 u : (k' = finToNat (start gamma) + k)
|
|
u = succInjective _ _ ford2
|
|
v : break {k} {k'} gamma (start gamma) {ford = u}
|
|
~=~ Telescope.Nil
|
|
v = breakStartEmpty {k} {k'} gamma {ford2 = u}
|
|
in replace {p = \z =>
|
|
Equal {a = Telescope k} {b = Telescope 0}
|
|
(break {k'} {k} gamma (start gamma)
|
|
{ford = z})
|
|
[]
|
|
}
|
|
(uip u _)
|
|
(keep v)
|
|
|
|
|
|
|
|
public export
|
|
projection : {0 gamma : Telescope k} -> (pos : Position gamma) -> (env : Environment gamma)
|
|
-> Environment (break {k = cast (finComplement pos)} gamma pos
|
|
{ford = sym $ finComplementSpec pos})
|
|
projection FZ env = rewrite finComplementSpec $ FZ {k} in
|
|
env
|
|
projection {gamma = []} (FS pos) Empty impossible
|
|
projection {k = S k} {gamma = gamma -. ty} (FS pos) (env ** x) =
|
|
rewrite castNaturality (finComplement pos) in
|
|
projection {k} pos env
|
|
-}
|