Idris2/libs/base/Control/WellFounded.idr
Guillaume ALLAIS 31ffb4e5c7 [ cleanup ] various public export & cleanup
Turns out that `Smaller` and `LT` won't unify because
1. the instance Sized Nat is not publicly exported
2. Smaller, and LT are stuck until fully applied

The given changes make that go away.
2021-07-27 09:06:20 +01:00

93 lines
2.4 KiB
Idris

module Control.WellFounded
import Control.Relation
import Data.Nat
import Data.List
%default total
public export
data Accessible : (rel : a -> a -> Type) -> (x : a) -> Type where
Access : (rec : (y : a) -> rel y x -> Accessible rel y) ->
Accessible rel x
public export
interface WellFounded a rel where
wellFounded : (x : a) -> Accessible rel x
export
accRec : {0 rel : (arg1 : a) -> (arg2 : a) -> Type} ->
(step : (x : a) -> ((y : a) -> rel y x -> b) -> b) ->
(z : a) -> (0 acc : Accessible rel z) -> b
accRec step z (Access f) =
step z $ \yarg, lt => accRec step yarg (f yarg lt)
export
accInd : {0 rel : a -> a -> Type} -> {0 P : a -> Type} ->
(step : (x : a) -> ((y : a) -> rel y x -> P y) -> P x) ->
(z : a) -> (0 acc : Accessible rel z) -> P z
accInd step z (Access f) =
step z $ \y, lt => accInd step y (f y lt)
export
wfRec : (0 _ : WellFounded a rel) =>
(step : (x : a) -> ((y : a) -> rel y x -> b) -> b) ->
a -> b
wfRec step x = accRec step x (wellFounded {rel} x)
export
wfInd : (0 _ : WellFounded a rel) => {0 P : a -> Type} ->
(step : (x : a) -> ((y : a) -> rel y x -> P y) -> P x) ->
(myz : a) -> P myz
wfInd step myz = accInd step myz (wellFounded {rel} myz)
public export
interface Sized a where
constructor MkSized
total size : a -> Nat
public export
Smaller : Sized a => a -> a -> Type
Smaller = \x, y => size x `LT` size y
public export
SizeAccessible : Sized a => a -> Type
SizeAccessible = Accessible Smaller
export
sizeAccessible : Sized a => (x : a) -> SizeAccessible x
sizeAccessible x = Access (acc $ size x)
where
acc : (sizeX : Nat) -> (y : a) -> (size y `LT` sizeX) -> SizeAccessible y
acc (S x') y (LTESucc yLEx')
= Access $ \z, zLTy => acc x' z $ transitive {rel = LTE} zLTy yLEx'
export
sizeInd : Sized a => {0 P : a -> Type} ->
(step : (x : a) -> ((y : a) -> Smaller y x -> P y) -> P x) ->
(z : a) ->
P z
sizeInd step z = accInd step z (sizeAccessible z)
export
sizeRec : Sized a =>
(step : (x : a) -> ((y : a) -> Smaller y x -> b) -> b) ->
(z : a) -> b
sizeRec step z = accRec step z (sizeAccessible z)
export
Sized Nat where
size = id
export
WellFounded Nat LT where
wellFounded = sizeAccessible
export
Sized (List a) where
size = length
export
(Sized a, Sized b) => Sized (Pair a b) where
size (x,y) = size x + size y