Idris2/libs/base/Data/Fin/Order.idr

35 lines
1.2 KiB
Idris

||| Implementation of ordering relations for `Fin`ite numbers
module Data.Fin.Order
import Data.Fin
import Data.Fun
import Data.Rel
import Data.Nat
import Data.Nat.Order
import Decidable.Decidable
import Decidable.Order
using (k : Nat)
data FinLTE : Fin k -> Fin k -> Type where
FromNatPrf : {m, n : Fin k} -> LTE (finToNat m) (finToNat n) -> FinLTE m n
implementation Preorder (Fin k) FinLTE where
transitive m n o (FromNatPrf p1) (FromNatPrf p2) =
FromNatPrf (LTEIsTransitive (finToNat m) (finToNat n) (finToNat o) p1 p2)
reflexive n = FromNatPrf (LTEIsReflexive (finToNat n))
implementation Poset (Fin k) FinLTE where
antisymmetric m n (FromNatPrf p1) (FromNatPrf p2) =
finToNatInjective m n (LTEIsAntisymmetric (finToNat m) (finToNat n) p1 p2)
implementation Decidable 2 [Fin k, Fin k] FinLTE where
decide m n with (decideLTE (finToNat m) (finToNat n))
decide m n | Yes prf = Yes (FromNatPrf prf)
decide m n | No disprf = No (\ (FromNatPrf prf) => disprf prf)
implementation Ordered (Fin k) FinLTE where
order m n =
either (Left . FromNatPrf)
(Right . FromNatPrf)
(order (finToNat m) (finToNat n))