Idris2/libs/prelude/Prelude.idr
Edwin Brady 4ae01d7264 %default doesn't affect interface methods
The required totality of interface methods is now only affected if
there's an explicit modifier on the method. This allows us to set
%default total on the Prelude, which is a good thing to do anyway,
without also requiring that every implementation of the interface in the
prelude has to be total, which would potentially be a pain.

Another good affect is that it speeds up totality checking elsewhere
because totality checking is done lazily, and so with the total flag set
we know in advance that prelude functions are total.
2020-05-28 15:52:03 +01:00

1718 lines
42 KiB
Idris

module Prelude
import public Builtin
import public PrimIO
%default total
{-
The Prelude is minimal (since it is effectively part of the language
specification, this seems to be desirable - we should, nevertheless, aim to
provide a good selection of base libraries). A rule of thumb is that it should
contain the basic functions required by almost any non-trivial program.
As such, it should contain:
- Anything the elaborator can desugar to (e.g. pairs, unit, =, laziness)
- Basic types Bool, Nat, List, Dec, Maybe, Either
- The most important utility functions: id, the, composition, etc
- Interfaces for arithmetic and implementations for the primitives and
basic types
- Char and String manipulation
- Show, Eq, Ord, and implementations for all types in the prelude
- Interfaces and functions for basic proof (cong, Uninhabited, etc) --
- Semigroup, Monoid
- Functor, Applicative, Monad and related functions
- Foldable
- Enum for range syntax
- Console IO
Everything else should be in the base libraries, and imported as required.
In particular, proofs of Nat/List properties that almost never get used in
practice would probably be better in base libraries.
(These guidelines will probably get revised a few times.)
-}
-- Numerical operators
infix 6 ==, /=, <, <=, >, >=
infixl 7 <<, >> -- unused
infixl 8 +, -
infixl 9 *, /
-- Boolean operators
infixr 4 &&
infixr 5 ||
-- List and String operators
infixr 7 ::, ++
-- Functor/Applicative/Monad/Algebra operators
infixl 1 >>=
infixr 2 <|>
infixl 3 <*>, *>, <*
infixr 4 <$>
infixl 6 <+>
-- Utility operators
infixr 9 .
infixr 0 $
infixl 9 `div`, `mod`
-----------------------
-- UTILITY FUNCTIONS --
-----------------------
||| Manually assign a type to an expression.
||| @ a the type to assign
||| @ x the element to get the type
public export %inline
the : (0 a : Type) -> (1 x : a) -> a
the _ x = x
||| Identity function.
public export %inline
id : (1 x : a) -> a -- Hopefully linearity annotation won't
-- break equality proofs involving id
id x = x
||| Constant function. Ignores its second argument.
public export %inline
const : a -> b -> a
const x = \value => x
||| Function composition.
public export %inline
(.) : (b -> c) -> (a -> b) -> a -> c
(.) f g = \x => f (g x)
||| Takes in the first two arguments in reverse order.
||| @ f the function to flip
public export
flip : (f : a -> b -> c) -> b -> a -> c
flip f x y = f y x
||| Function application.
public export
apply : (a -> b) -> a -> b
apply f a = f a
public export
curry : ((a, b) -> c) -> a -> b -> c
curry f a b = f (a, b)
public export
uncurry : (a -> b -> c) -> (a, b) -> c
uncurry f (a, b) = f a b
-- $ is compiled specially to shortcut any tricky unification issues, but if
-- it did have a type this is what it would be, and it might be useful to
-- use directly sometimes (e.g. in higher order functions)
public export
($) : forall a, b . ((x : a) -> b x) -> (x : a) -> b x
($) f a = f a
-------------------
-- PROOF HELPERS --
-------------------
||| Equality is a congruence.
public export
cong : (0 f : t -> u) -> (1 p : a = b) -> f a = f b
cong f Refl = Refl
||| A canonical proof that some type is empty.
public export
interface Uninhabited t where
||| If I have a t, I've had a contradiction.
||| @ t the uninhabited type
uninhabited : t -> Void
||| The eliminator for the `Void` type.
%extern
public export
void : (0 x : Void) -> a
export
Uninhabited Void where
uninhabited = id
||| Use an absurd assumption to discharge a proof obligation.
||| @ t some empty type
||| @ a the goal type
||| @ h the contradictory hypothesis
public export
absurd : Uninhabited t => (h : t) -> a
absurd h = void (uninhabited h)
public export
Not : Type -> Type
Not x = x -> Void
--------------
-- BOOLEANS --
--------------
||| Boolean Data Type.
public export
data Bool = True | False
||| Boolean NOT.
public export
not : (1 b : Bool) -> Bool
not True = False
not False = True
||| Boolean AND only evaluates the second argument if the first is `True`.
public export
(&&) : (1 b : Bool) -> Lazy Bool -> Bool
(&&) True x = x
(&&) False x = False
||| Boolean OR only evaluates the second argument if the first is `False`.
public export
(||) : (1 b : Bool) -> Lazy Bool -> Bool
(||) True x = True
(||) False x = x
%inline
public export
intToBool : Int -> Bool
intToBool 0 = False
intToBool x = True
------------------------
-- EQUALITY, ORDERING --
------------------------
||| The Eq interface defines inequality and equality.
public export
interface Eq ty where
(==) : ty -> ty -> Bool
(/=) : ty -> ty -> Bool
x == y = not (x /= y)
x /= y = not (x == y)
public export
Eq () where
_ == _ = True
public export
Eq Bool where
True == True = True
False == False = True
_ == _ = False
public export
Eq Int where
x == y = intToBool (prim__eq_Int x y)
public export
Eq Integer where
x == y = intToBool (prim__eq_Integer x y)
public export
Eq Double where
x == y = intToBool (prim__eq_Double x y)
public export
Eq Char where
x == y = intToBool (prim__eq_Char x y)
public export
Eq String where
x == y = intToBool (prim__eq_String x y)
public export
Eq a => Eq b => Eq (a, b) where
(x1, y1) == (x2, y2) = x1 == x2 && y1 == y2
public export
data Ordering = LT | EQ | GT
public export
Eq Ordering where
LT == LT = True
EQ == EQ = True
GT == GT = True
_ == _ = False
||| The Ord interface defines comparison operations on ordered data types.
public export
interface Eq ty => Ord ty where
compare : ty -> ty -> Ordering
(<) : ty -> ty -> Bool
(<) x y = compare x y == LT
(>) : ty -> ty -> Bool
(>) x y = compare x y == GT
(<=) : ty -> ty -> Bool
(<=) x y = compare x y /= GT
(>=) : ty -> ty -> Bool
(>=) x y = compare x y /= LT
max : ty -> ty -> ty
max x y = if x > y then x else y
min : ty -> ty -> ty
min x y = if (x < y) then x else y
public export
Ord () where
compare _ _ = EQ
public export
Ord Bool where
compare False False = EQ
compare False True = LT
compare True False = GT
compare True True = EQ
public export
Ord Int where
compare x y = if x < y then LT else if x == y then EQ else GT
(<) x y = intToBool (prim__lt_Int x y)
(<=) x y = intToBool (prim__lte_Int x y)
(>) x y = intToBool (prim__gt_Int x y)
(>=) x y = intToBool (prim__gte_Int x y)
public export
Ord Integer where
compare x y = if x < y then LT else if x == y then EQ else GT
(<) x y = intToBool (prim__lt_Integer x y)
(<=) x y = intToBool (prim__lte_Integer x y)
(>) x y = intToBool (prim__gt_Integer x y)
(>=) x y = intToBool (prim__gte_Integer x y)
public export
Ord Double where
compare x y = if x < y then LT else if x == y then EQ else GT
(<) x y = intToBool (prim__lt_Double x y)
(<=) x y = intToBool (prim__lte_Double x y)
(>) x y = intToBool (prim__gt_Double x y)
(>=) x y = intToBool (prim__gte_Double x y)
public export
Ord String where
compare x y = if x < y then LT else if x == y then EQ else GT
(<) x y = intToBool (prim__lt_String x y)
(<=) x y = intToBool (prim__lte_String x y)
(>) x y = intToBool (prim__gt_String x y)
(>=) x y = intToBool (prim__gte_String x y)
public export
Ord Char where
compare x y = if x < y then LT else if x == y then EQ else GT
(<) x y = intToBool (prim__lt_Char x y)
(<=) x y = intToBool (prim__lte_Char x y)
(>) x y = intToBool (prim__gt_Char x y)
(>=) x y = intToBool (prim__gte_Char x y)
public export
Ord a => Ord b => Ord (a, b) where
compare (x1, y1) (x2, y2)
= if x1 /= x2 then compare x1 x2
else compare y1 y2
------------------------
-- NUMERIC INTERFACES --
------------------------
%integerLit fromInteger
||| The Num interface defines basic numerical arithmetic.
public export
interface Num ty where
(+) : ty -> ty -> ty
(*) : ty -> ty -> ty
||| Conversion from Integer.
fromInteger : Integer -> ty
%allow_overloads fromInteger
||| The `Neg` interface defines operations on numbers which can be negative.
public export
interface Num ty => Neg ty where
||| The underlying of unary minus. `-5` desugars to `negate (fromInteger 5)`.
negate : ty -> ty
(-) : ty -> ty -> ty
||| Numbers for which the absolute value is defined should implement `Abs`.
public export
interface Num ty => Abs ty where
||| Absolute value.
abs : ty -> ty
public export
interface Num ty => Fractional ty where
partial
(/) : ty -> ty -> ty
partial
recip : ty -> ty
recip x = 1 / x
public export
interface Num ty => Integral ty where
partial
div : ty -> ty -> ty
partial
mod : ty -> ty -> ty
----- Instances for primitives
-- Integer
public export
Num Integer where
(+) = prim__add_Integer
(*) = prim__mul_Integer
fromInteger = id
public export
Neg Integer where
negate x = prim__sub_Integer 0 x
(-) = prim__sub_Integer
public export
Abs Integer where
abs x = if x < 0 then -x else x
public export
Integral Integer where
div x y
= case y == 0 of
False => prim__div_Integer x y
mod x y
= case y == 0 of
False => prim__mod_Integer x y
-- This allows us to pick integer as a default at the end of elaboration if
-- all other possibilities fail. I don't plan to provide a nicer syntax for
-- this...
%defaulthint
%inline
public export
defaultInteger : Num Integer
defaultInteger = %search
-- Int
public export
Num Int where
(+) = prim__add_Int
(*) = prim__mul_Int
fromInteger = prim__cast_IntegerInt
public export
Neg Int where
negate x = prim__sub_Int 0 x
(-) = prim__sub_Int
public export
Abs Int where
abs x = if x < 0 then -x else x
public export
Integral Int where
div x y
= case y == 0 of
False => prim__div_Int x y
mod x y
= case y == 0 of
False => prim__mod_Int x y
-- Double
public export
Num Double where
(+) = prim__add_Double
(*) = prim__mul_Double
fromInteger = prim__cast_IntegerDouble
public export
Neg Double where
negate x = prim__negate_Double x
(-) = prim__sub_Double
public export
Abs Double where
abs x = if x < 0 then -x else x
public export
Fractional Double where
(/) = prim__div_Double
-------------
-- ALGEBRA --
-------------
||| Sets equipped with a single binary operation that is associative. Must
||| satisfy the following laws:
|||
||| + Associativity of `<+>`:
||| forall a b c, a <+> (b <+> c) == (a <+> b) <+> c
public export
interface Semigroup ty where
(<+>) : ty -> ty -> ty
||| Sets equipped with a single binary operation that is associative, along with
||| a neutral element for that binary operation. Must satisfy the following
||| laws:
|||
||| + Associativity of `<+>`:
||| forall a b c, a <+> (b <+> c) == (a <+> b) <+> c
||| + Neutral for `<+>`:
||| forall a, a <+> neutral == a
||| forall a, neutral <+> a == a
public export
interface Semigroup ty => Monoid ty where
neutral : ty
export
shiftL : Int -> Int -> Int
shiftL = prim__shl_Int
export
shiftR : Int -> Int -> Int
shiftR = prim__shr_Int
---------------------------------
-- FUNCTOR, APPLICATIVE, ALTERNATIVE, MONAD --
---------------------------------
||| Functors allow a uniform action over a parameterised type.
||| @ f a parameterised type
public export
interface Functor f where
||| Apply a function across everything of type 'a' in a parameterised type
||| @ f the parameterised type
||| @ func the function to apply
map : (func : a -> b) -> f a -> f b
||| An infix alias for `map`, applying a function across everything of type 'a'
||| in a parameterised type.
||| @ f the parameterised type
||| @ func the function to apply
public export
(<$>) : Functor f => (func : a -> b) -> f a -> f b
(<$>) func x = map func x
||| Run something for effects, throwing away the return value.
public export
ignore : Functor f => f a -> f ()
ignore = map (const ())
public export
interface Functor f => Applicative f where
pure : a -> f a
(<*>) : f (a -> b) -> f a -> f b
public export
(<*) : Applicative f => f a -> f b -> f a
a <* b = map const a <*> b
public export
(*>) : Applicative f => f a -> f b -> f b
a *> b = map (const id) a <*> b
%allow_overloads pure
%allow_overloads (<*)
%allow_overloads (*>)
public export
interface Applicative f => Alternative f where
empty : f a
(<|>) : f a -> f a -> f a
public export
interface Applicative m => Monad m where
||| Also called `bind`.
(>>=) : m a -> (a -> m b) -> m b
||| Also called `flatten` or mu.
join : m (m a) -> m a
-- default implementations
(>>=) x f = join (f <$> x)
join x = x >>= id
%allow_overloads (>>=)
||| `guard a` is `pure ()` if `a` is `True` and `empty` if `a` is `False`.
public export
guard : Alternative f => Bool -> f ()
guard x = if x then pure () else empty
||| Conditionally execute an applicative expression.
public export
when : Applicative f => Bool -> Lazy (f ()) -> f ()
when True f = f
when False f = pure ()
---------------------------
-- FOLDABLE, TRAVERSABLE --
---------------------------
||| The `Foldable` interface describes how you can iterate over the elements in
||| a parameterised type and combine the elements together, using a provided
||| function, into a single result.
||| @ t The type of the 'Foldable' parameterised type.
public export
interface Foldable (t : Type -> Type) where
||| Successively combine the elements in a parameterised type using the
||| provided function, starting with the element that is in the final position
||| i.e. the right-most position.
||| @ func The function used to 'fold' an element into the accumulated result
||| @ init The starting value the results are being combined into
||| @ input The parameterised type
foldr : (func : elem -> acc -> acc) -> (init : acc) -> (input : t elem) -> acc
||| The same as `foldr` but begins the folding from the element at the initial
||| position in the data structure i.e. the left-most position.
||| @ func The function used to 'fold' an element into the accumulated result
||| @ init The starting value the results are being combined into
||| @ input The parameterised type
foldl : (func : acc -> elem -> acc) -> (init : acc) -> (input : t elem) -> acc
foldl f z t = foldr (flip (.) . flip f) id t z
||| Similar to `foldl`, but uses a function wrapping its result in a `Monad`.
||| Consequently, the final value is wrapped in the same `Monad`.
public export
foldlM : (Foldable t, Monad m) => (funcM: a -> b -> m a) -> (init: a) -> (input: t b) -> m a
foldlM fm a0 = foldl (\ma,b => ma >>= flip fm b) (pure a0)
||| Combine each element of a structure into a monoid.
public export
concat : (Foldable t, Monoid a) => t a -> a
concat = foldr (<+>) neutral
||| Combine into a monoid the collective results of applying a function to each
||| element of a structure.
public export
concatMap : (Foldable t, Monoid m) => (a -> m) -> t a -> m
concatMap f = foldr ((<+>) . f) neutral
||| The conjunction of all elements of a structure containing lazy boolean
||| values. `and` short-circuits from left to right, evaluating until either an
||| element is `False` or no elements remain.
public export
and : Foldable t => t (Lazy Bool) -> Bool
and = foldl (&&) True
||| The disjunction of all elements of a structure containing lazy boolean
||| values. `or` short-circuits from left to right, evaluating either until an
||| element is `True` or no elements remain.
public export
or : Foldable t => t (Lazy Bool) -> Bool
or = foldl (||) False
||| The disjunction of the collective results of applying a predicate to all
||| elements of a structure. `any` short-circuits from left to right.
public export
any : Foldable t => (a -> Bool) -> t a -> Bool
any p = foldl (\x,y => x || p y) False
||| The disjunction of the collective results of applying a predicate to all
||| elements of a structure. `all` short-circuits from left to right.
public export
all : Foldable t => (a -> Bool) -> t a -> Bool
all p = foldl (\x,y => x && p y) True
||| Add together all the elements of a structure.
public export
sum : (Foldable t, Num a) => t a -> a
sum = foldr (+) 0
||| Add together all the elements of a structure.
||| Same as `sum` but tail recursive.
export
sum' : (Foldable t, Num a) => t a -> a
sum' = foldl (+) 0
||| Multiply together all elements of a structure.
public export
product : (Foldable t, Num a) => t a -> a
product = foldr (*) 1
||| Multiply together all elements of a structure.
||| Same as `product` but tail recursive.
export
product' : (Foldable t, Num a) => t a -> a
product' = foldl (*) 1
||| Map each element of a structure to a computation, evaluate those
||| computations and discard the results.
public export
traverse_ : (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
traverse_ f = foldr ((*>) . f) (pure ())
||| Evaluate each computation in a structure and discard the results.
public export
sequence_ : (Foldable t, Applicative f) => t (f a) -> f ()
sequence_ = foldr (*>) (pure ())
||| Like `traverse_` but with the arguments flipped.
public export
for_ : (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
for_ = flip traverse_
||| Fold using Alternative.
|||
||| If you have a left-biased alternative operator `<|>`, then `choice` performs
||| left-biased choice from a list of alternatives, which means that it
||| evaluates to the left-most non-`empty` alternative.
|||
||| If the list is empty, or all values in it are `empty`, then it evaluates to
||| `empty`.
|||
||| Example:
|||
||| ```
||| -- given a parser expression like:
||| expr = literal <|> keyword <|> funcall
|||
||| -- choice lets you write this as:
||| expr = choice [literal, keyword, funcall]
||| ```
|||
||| Note: In Haskell, `choice` is called `asum`.
public export
choice : (Foldable t, Alternative f) => t (f a) -> f a
choice = foldr (<|>) empty
||| A fused version of `choice` and `map`.
public export
choiceMap : (Foldable t, Alternative f) => (a -> f b) -> t a -> f b
choiceMap f = foldr (\e, a => f e <|> a) empty
public export
interface (Functor t, Foldable t) => Traversable (t : Type -> Type) where
||| Map each element of a structure to a computation, evaluate those
||| computations and combine the results.
traverse : Applicative f => (a -> f b) -> t a -> f (t b)
||| Evaluate each computation in a structure and collect the results.
public export
sequence : (Traversable t, Applicative f) => t (f a) -> f (t a)
sequence = traverse id
||| Like `traverse` but with the arguments flipped.
public export
for : (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
for = flip traverse
-----------
-- NATS ---
-----------
||| Natural numbers: unbounded, unsigned integers which can be pattern matched.
public export
data Nat =
||| Zero.
Z
||| Successor.
| S Nat
%name Nat k, j, i
public export
integerToNat : Integer -> Nat
integerToNat x
= if intToBool (prim__lte_Integer x 0)
then Z
else S (assert_total (integerToNat (prim__sub_Integer x 1)))
-- Define separately so we can spot the name when optimising Nats
||| Add two natural numbers.
||| @ x the number to case-split on
||| @ y the other numberpublic export
public export
plus : (1 x : Nat) -> (1 y : Nat) -> Nat
plus Z y = y
plus (S k) y = S (plus k y)
||| Subtract natural numbers. If the second number is larger than the first,
||| return 0.
public export
minus : (1 left : Nat) -> Nat -> Nat
minus Z right = Z
minus left Z = left
minus (S left) (S right) = minus left right
||| Multiply natural numbers.
public export
mult : (1 x : Nat) -> Nat -> Nat
mult Z y = Z
mult (S k) y = plus y (mult k y)
public export
Num Nat where
(+) = plus
(*) = mult
fromInteger x = integerToNat x
public export
Eq Nat where
Z == Z = True
S j == S k = j == k
_ == _ = False
public export
Ord Nat where
compare Z Z = EQ
compare Z (S k) = LT
compare (S k) Z = GT
compare (S j) (S k) = compare j k
public export
natToInteger : Nat -> Integer
natToInteger Z = 0
natToInteger (S k) = 1 + natToInteger k
-- integer (+) may be non-linear in second
-- argument
-----------
-- PAIRS --
-----------
public export
Functor (Pair a) where
map f (x, y) = (x, f y)
public export
mapFst : (a -> c) -> (a, b) -> (c, b)
mapFst f (x, y) = (f x, y)
-----------
-- MAYBE --
-----------
||| An optional value. This can be used to represent the possibility of
||| failure, where a function may return a value, or not.
public export
data Maybe : (ty : Type) -> Type where
||| No value stored
Nothing : Maybe ty
||| A value of type `ty` is stored
Just : (1 x : ty) -> Maybe ty
public export
maybe : Lazy b -> Lazy (a -> b) -> Maybe a -> b
maybe n j Nothing = n
maybe n j (Just x) = j x
public export
Eq a => Eq (Maybe a) where
Nothing == Nothing = True
Nothing == (Just _) = False
(Just _) == Nothing = False
(Just a) == (Just b) = a == b
public export
Ord a => Ord (Maybe a) where
compare Nothing Nothing = EQ
compare Nothing (Just _) = LT
compare (Just _) Nothing = GT
compare (Just a) (Just b) = compare a b
public export
Semigroup (Maybe a) where
Nothing <+> m = m
(Just x) <+> _ = Just x
public export
Monoid (Maybe a) where
neutral = Nothing
public export
Functor Maybe where
map f (Just x) = Just (f x)
map f Nothing = Nothing
public export
Applicative Maybe where
pure = Just
Just f <*> Just a = Just (f a)
_ <*> _ = Nothing
public export
Alternative Maybe where
empty = Nothing
(Just x) <|> _ = Just x
Nothing <|> v = v
public export
Monad Maybe where
Nothing >>= k = Nothing
(Just x) >>= k = k x
public export
Foldable Maybe where
foldr _ z Nothing = z
foldr f z (Just x) = f x z
public export
Traversable Maybe where
traverse f Nothing = pure Nothing
traverse f (Just x) = (pure Just) <*> (f x)
---------
-- DEC --
---------
||| Decidability. A decidable property either holds or is a contradiction.
public export
data Dec : Type -> Type where
||| The case where the property holds.
||| @ prf the proof
Yes : (prf : prop) -> Dec prop
||| The case where the property holding would be a contradiction.
||| @ contra a demonstration that prop would be a contradiction
No : (contra : prop -> Void) -> Dec prop
------------
-- EITHER --
------------
||| A sum type.
public export
data Either : (a : Type) -> (b : Type) -> Type where
||| One possibility of the sum, conventionally used to represent errors.
Left : forall a, b. (1 x : a) -> Either a b
||| The other possibility, conventionally used to represent success.
Right : forall a, b. (1 x : b) -> Either a b
||| Simply-typed eliminator for Either.
||| @ f the action to take on Left
||| @ g the action to take on Right
||| @ e the sum to analyze
public export
either : (f : Lazy (a -> c)) -> (g : Lazy (b -> c)) -> (e : Either a b) -> c
either l r (Left x) = l x
either l r (Right x) = r x
public export
(Eq a, Eq b) => Eq (Either a b) where
Left x == Left x' = x == x'
Right x == Right x' = x == x'
_ == _ = False
public export
Functor (Either e) where
map f (Left x) = Left x
map f (Right x) = Right (f x)
public export
Applicative (Either e) where
pure = Right
(Left a) <*> _ = Left a
(Right f) <*> (Right r) = Right (f r)
(Right _) <*> (Left l) = Left l
public export
Monad (Either e) where
(Left n) >>= _ = Left n
(Right r) >>= f = f r
-----------
-- LISTS --
-----------
||| Generic lists.
public export
data List a =
||| Empty list
Nil
||| A non-empty list, consisting of a head element and the rest of the list.
| (::) a (List a)
%name List xs, ys, zs
public export
Eq a => Eq (List a) where
[] == [] = True
x :: xs == y :: ys = x == y && xs == ys
_ == _ = False
public export
Ord a => Ord (List a) where
compare [] [] = EQ
compare [] (x :: xs) = LT
compare (x :: xs) [] = GT
compare (x :: xs) (y ::ys)
= case compare x y of
EQ => compare xs ys
c => c
namespace List
public export
(++) : (1 xs : List a) -> List a -> List a
[] ++ ys = ys
(x :: xs) ++ ys = x :: xs ++ ys
public export
Functor List where
map f [] = []
map f (x :: xs) = f x :: map f xs
public export
Semigroup (List a) where
(<+>) = (++)
public export
Monoid (List a) where
neutral = []
public export
Foldable List where
foldr c n [] = n
foldr c n (x::xs) = c x (foldr c n xs)
foldl f q [] = q
foldl f q (x::xs) = foldl f (f q x) xs
public export
Applicative List where
pure x = [x]
fs <*> vs = concatMap (\f => map f vs) fs
public export
Alternative List where
empty = []
(<|>) = (++)
public export
Monad List where
m >>= f = concatMap f m
public export
Traversable List where
traverse f [] = pure []
traverse f (x::xs) = pure (::) <*> (f x) <*> (traverse f xs)
||| Check if something is a member of a list using the default Boolean equality.
public export
elem : Eq a => a -> List a -> Bool
x `elem` [] = False
x `elem` (y :: ys) = if x == y then True else x `elem` ys
-------------
-- STREAMS --
-------------
namespace Stream
||| An infinite stream.
public export
data Stream : Type -> Type where
(::) : a -> Inf (Stream a) -> Stream a
public export
Functor Stream where
map f (x :: xs) = f x :: map f xs
||| The first element of an infinite stream.
public export
head : Stream a -> a
head (x :: xs) = x
||| All but the first element.
public export
tail : Stream a -> Stream a
tail (x :: xs) = xs
||| Take precisely n elements from the stream.
||| @ n how many elements to take
||| @ xs the stream
public export
take : (1 n : Nat) -> (xs : Stream a) -> List a
take Z xs = []
take (S k) (x :: xs) = x :: take k xs
-------------
-- STRINGS --
-------------
namespace Strings
public export
(++) : (1 x : String) -> (1 y : String) -> String
x ++ y = prim__strAppend x y
||| Returns the length of the string.
|||
||| ```idris example
||| length ""
||| ```
||| ```idris example
||| length "ABC"
||| ```
public export
length : String -> Nat
length str = fromInteger (prim__cast_IntInteger (prim__strLength str))
||| Reverses the elements within a string.
|||
||| ```idris example
||| reverse "ABC"
||| ```
||| ```idris example
||| reverse ""
||| ```
public export
reverse : String -> String
reverse = prim__strReverse
||| Returns a substring of a given string
|||
||| @ index The (zero based) index of the string to extract. If this is beyond
||| the end of the string, the function returns the empty string.
||| @ len The desired length of the substring. Truncated if this exceeds the
||| length of the input
||| @ subject The string to return a portion of
public export
substr : (index : Nat) -> (len : Nat) -> (subject : String) -> String
substr s e subj
= if natToInteger s < natToInteger (length subj)
then prim__strSubstr (prim__cast_IntegerInt (natToInteger s))
(prim__cast_IntegerInt (natToInteger e))
subj
else ""
||| Adds a character to the front of the specified string.
|||
||| ```idris example
||| strCons 'A' "B"
||| ```
||| ```idris example
||| strCons 'A' ""
||| ```
public export
strCons : Char -> String -> String
strCons = prim__strCons
public export
strUncons : String -> Maybe (Char, String)
strUncons "" = Nothing
strUncons str = assert_total $ Just (prim__strHead str, prim__strTail str)
||| Turns a list of characters into a string.
public export
pack : List Char -> String
pack [] = ""
pack (x :: xs) = strCons x (pack xs)
export
fastPack : List Char -> String
fastPack xs
= unsafePerformIO (schemeCall String "string" (toFArgs xs))
where
toFArgs : List Char -> FArgList
toFArgs [] = []
toFArgs (x :: xs) = x :: toFArgs xs
||| Turns a string into a list of characters.
|||
||| ```idris example
||| unpack "ABC"
||| ```
public export
unpack : String -> List Char
unpack str = unpack' 0 (prim__cast_IntegerInt (natToInteger (length str))) str
where
unpack' : Int -> Int -> String -> List Char
unpack' pos len str
= if pos >= len
then []
else assert_total (prim__strIndex str pos) :: assert_total (unpack' (pos + 1) len str)
public export
Semigroup String where
(<+>) = (++)
public export
Monoid String where
neutral = ""
----------------
-- CHARACTERS --
----------------
||| Returns true if the character is in the range [A-Z].
public export
isUpper : Char -> Bool
isUpper x = x >= 'A' && x <= 'Z'
||| Returns true if the character is in the range [a-z].
public export
isLower : Char -> Bool
isLower x = x >= 'a' && x <= 'z'
||| Returns true if the character is in the ranges [A-Z][a-z].
public export
isAlpha : Char -> Bool
isAlpha x = isUpper x || isLower x
||| Returns true if the character is in the range [0-9].
public export
isDigit : Char -> Bool
isDigit x = (x >= '0' && x <= '9')
||| Returns true if the character is in the ranges [A-Z][a-z][0-9].
public export
isAlphaNum : Char -> Bool
isAlphaNum x = isDigit x || isAlpha x
||| Returns true if the character is a whitespace character.
public export
isSpace : Char -> Bool
isSpace x
= x == ' ' || x == '\t' || x == '\r' ||
x == '\n' || x == '\f' || x == '\v' ||
x == '\xa0'
||| Returns true if the character represents a new line.
public export
isNL : Char -> Bool
isNL x = x == '\r' || x == '\n'
||| Convert a letter to the corresponding upper-case letter, if any.
||| Non-letters are ignored.
public export
toUpper : Char -> Char
toUpper x
= if (isLower x)
then prim__cast_IntChar (prim__cast_CharInt x - 32)
else x
||| Convert a letter to the corresponding lower-case letter, if any.
||| Non-letters are ignored.
public export
toLower : Char -> Char
toLower x
= if (isUpper x)
then prim__cast_IntChar (prim__cast_CharInt x + 32)
else x
||| Returns true if the character is a hexadecimal digit i.e. in the range
||| [0-9][a-f][A-F].
public export
isHexDigit : Char -> Bool
isHexDigit x = elem (toUpper x) hexChars where
hexChars : List Char
hexChars
= ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F']
||| Returns true if the character is an octal digit.
public export
isOctDigit : Char -> Bool
isOctDigit x = (x >= '0' && x <= '7')
||| Returns true if the character is a control character.
public export
isControl : Char -> Bool
isControl x
= (x >= '\x0000' && x <= '\x001f')
|| (x >= '\x007f' && x <= '\x009f')
||| Convert the number to its backend dependent (usually Unicode) Char
||| equivalent.
public export
chr : Int -> Char
chr = prim__cast_IntChar
||| Return the backend dependent (usually Unicode) numerical equivalent of the Char.
public export
ord : Char -> Int
ord = prim__cast_CharInt
----------
-- SHOW --
----------
||| The precedence of an Idris operator or syntactic context.
public export
data Prec = Open | Equal | Dollar | Backtick | User Nat | PrefixMinus | App
||| Gives the constructor index of the Prec as a helper for writing
||| implementations.
public export
precCon : Prec -> Integer
precCon Open = 0
precCon Equal = 1
precCon Dollar = 2
precCon Backtick = 3
precCon (User n) = 4
precCon PrefixMinus = 5
precCon App = 6
export
Eq Prec where
(==) (User m) (User n) = m == n
(==) x y = precCon x == precCon y
export
Ord Prec where
compare (User m) (User n) = compare m n
compare x y = compare (precCon x) (precCon y)
||| Things that have a canonical `String` representation.
public export
interface Show ty where
||| Convert a value to its `String` representation.
||| @ x the value to convert
show : (x : ty) -> String
show x = showPrec Open x
||| Convert a value to its `String` representation in a certain precedence
||| context.
|||
||| A value should produce parentheses around itself if and only if the given
||| precedence context is greater than or equal to the precedence of the
||| outermost operation represented in the produced `String`. *This is
||| different from Haskell*, which requires it to be strictly greater. `Open`
||| should thus always produce *no* outermost parens, `App` should always
||| produce outermost parens except on atomic values and those that provide
||| their own bracketing, like `Pair` and `List`.
||| @ d the precedence context.
||| @ x the value to convert
showPrec : (d : Prec) -> (x : ty) -> String
showPrec _ x = show x
||| Surround a `String` with parentheses depending on a condition.
||| @ b whether to add parentheses
showParens : (1 b : Bool) -> String -> String
showParens False s = s
showParens True s = "(" ++ s ++ ")"
||| A helper for the common case of showing a non-infix constructor with at
||| least one argument, for use with `showArg`.
|||
||| Apply `showCon` to the precedence context, the constructor name, and the
||| args shown with `showArg` and concatenated. Example:
||| ```
||| data Ann a = MkAnn String a
|||
||| Show a => Show (Ann a) where
||| showPrec d (MkAnn s x) = showCon d "MkAnn" $ showArg s ++ showArg x
||| ```
export
showCon : (d : Prec) -> (conName : String) -> (shownArgs : String) -> String
showCon d conName shownArgs = showParens (d >= App) (conName ++ shownArgs)
||| A helper for the common case of showing a non-infix constructor with at
||| least one argument, for use with `showCon`.
|||
||| This adds a space to the front so the results can be directly concatenated.
||| See `showCon` for details and an example.
export
showArg : Show a => (x : a) -> String
showArg x = " " ++ showPrec App x
firstCharIs : (Char -> Bool) -> String -> Bool
firstCharIs p "" = False
firstCharIs p str = p (assert_total (prim__strHead str))
primNumShow : (a -> String) -> Prec -> a -> String
primNumShow f d x = let str = f x in showParens (d >= PrefixMinus && firstCharIs (== '-') str) str
export
Show Int where
showPrec = primNumShow prim__cast_IntString
export
Show Integer where
showPrec = primNumShow prim__cast_IntegerString
export
Show Double where
showPrec = primNumShow prim__cast_DoubleString
protectEsc : (Char -> Bool) -> String -> String -> String
protectEsc p f s = f ++ (if firstCharIs p s then "\\&" else "") ++ s
showLitChar : Char -> String -> String
showLitChar '\a' = ("\\a" ++)
showLitChar '\b' = ("\\b" ++)
showLitChar '\f' = ("\\f" ++)
showLitChar '\n' = ("\\n" ++)
showLitChar '\r' = ("\\r" ++)
showLitChar '\t' = ("\\t" ++)
showLitChar '\v' = ("\\v" ++)
showLitChar '\SO' = protectEsc (== 'H') "\\SO"
showLitChar '\DEL' = ("\\DEL" ++)
showLitChar '\\' = ("\\\\" ++)
showLitChar c
= case getAt (fromInteger (prim__cast_CharInteger c)) asciiTab of
Just k => strCons '\\' . (k ++)
Nothing => if (c > '\DEL')
then strCons '\\' . protectEsc isDigit (show (prim__cast_CharInt c))
else strCons c
where
asciiTab : List String
asciiTab
= ["NUL", "SOH", "STX", "ETX", "EOT", "ENQ", "ACK", "BEL",
"BS", "HT", "LF", "VT", "FF", "CR", "SO", "SI",
"DLE", "DC1", "DC2", "DC3", "DC4", "NAK", "SYN", "ETB",
"CAN", "EM", "SUB", "ESC", "FS", "GS", "RS", "US"]
getAt : Nat -> List String -> Maybe String
getAt Z (x :: xs) = Just x
getAt (S k) (x :: xs) = getAt k xs
getAt _ [] = Nothing
showLitString : List Char -> String -> String
showLitString [] = id
showLitString ('"'::cs) = ("\\\"" ++) . showLitString cs
showLitString (c ::cs) = (showLitChar c) . showLitString cs
export
Show Char where
show '\'' = "'\\''"
show c = strCons '\'' (showLitChar c "'")
export
Show String where
show cs = strCons '"' (showLitString (unpack cs) "\"")
export
Show Nat where
show n = show (the Integer (natToInteger n))
export
Show Bool where
show True = "True"
show False = "False"
export
Show () where
show () = "()"
export
(Show a, Show b) => Show (a, b) where
show (x, y) = "(" ++ show x ++ ", " ++ show y ++ ")"
export
(Show a, {y : a} -> Show (p y)) => Show (DPair a p) where
show (y ** prf) = "(" ++ show y ++ " ** " ++ show prf ++ ")"
export
Show a => Show (List a) where
show xs = "[" ++ show' "" xs ++ "]"
where
show' : String -> List a -> String
show' acc [] = acc
show' acc [x] = acc ++ show x
show' acc (x :: xs) = show' (acc ++ show x ++ ", ") xs
export
Show a => Show (Maybe a) where
showPrec d Nothing = "Nothing"
showPrec d (Just x) = showCon d "Just" (showArg x)
export
(Show a, Show b) => Show (Either a b) where
showPrec d (Left x) = showCon d "Left" $ showArg x
showPrec d (Right x) = showCon d "Right" $ showArg x
--------
-- IO --
--------
public export
Functor IO where
map f io = io_bind io (\b => io_pure (f b))
%inline
public export
Applicative IO where
pure x = io_pure x
f <*> a
= io_bind f (\f' =>
io_bind a (\a' =>
io_pure (f' a')))
%inline
public export
Monad IO where
b >>= k = io_bind b k
||| Output something showable to stdout, without a trailing newline.
export
print : Show a => a -> IO ()
print x = putStr $ show x
||| Output something showable to stdout, with a trailing newline.
export
printLn : Show a => a -> IO ()
printLn x = putStrLn $ show x
-----------------------
-- DOUBLE PRIMITIVES --
-----------------------
public export
pi : Double
pi = 3.14159265358979323846
public export
euler : Double
euler = 2.7182818284590452354
public export
exp : Double -> Double
exp x = prim__doubleExp x
public export
log : Double -> Double
log x = prim__doubleLog x
public export
pow : Double -> Double -> Double
pow x y = exp (y * log x)
public export
sin : Double -> Double
sin x = prim__doubleSin x
public export
cos : Double -> Double
cos x = prim__doubleCos x
public export
tan : Double -> Double
tan x = prim__doubleTan x
public export
asin : Double -> Double
asin x = prim__doubleASin x
public export
acos : Double -> Double
acos x = prim__doubleACos x
public export
atan : Double -> Double
atan x = prim__doubleATan x
public export
sinh : Double -> Double
sinh x = (exp x - exp (-x)) / 2
public export
cosh : Double -> Double
cosh x = (exp x + exp (-x)) / 2
public export
tanh : Double -> Double
tanh x = sinh x / cosh x
public export
sqrt : Double -> Double
sqrt x = prim__doubleSqrt x
public export
floor : Double -> Double
floor x = prim__doubleFloor x
public export
ceiling : Double -> Double
ceiling x = prim__doubleCeiling x
-----------
-- CASTS --
-----------
-- Casts between primitives only here. They might be lossy.
||| Interface for transforming an instance of a data type to another type.
public export
interface Cast from to where
||| Perform a (potentially lossy!) cast operation.
||| @ orig The original type
cast : (orig : from) -> to
-- To String
export
Cast Int String where
cast = prim__cast_IntString
export
Cast Integer String where
cast = prim__cast_IntegerString
export
Cast Char String where
cast = prim__cast_CharString
export
Cast Double String where
cast = prim__cast_DoubleString
-- To Integer
export
Cast Int Integer where
cast = prim__cast_IntInteger
export
Cast Char Integer where
cast = prim__cast_CharInteger
export
Cast Double Integer where
cast = prim__cast_DoubleInteger
export
Cast String Integer where
cast = prim__cast_StringInteger
export
Cast Nat Integer where
cast = natToInteger
-- To Int
export
Cast Integer Int where
cast = prim__cast_IntegerInt
export
Cast Char Int where
cast = prim__cast_CharInt
export
Cast Double Int where
cast = prim__cast_DoubleInt
export
Cast String Int where
cast = prim__cast_StringInt
export
Cast Nat Int where
cast = fromInteger . natToInteger
-- To Char
export
Cast Int Char where
cast = prim__cast_IntChar
-- To Double
export
Cast Int Double where
cast = prim__cast_IntDouble
export
Cast Integer Double where
cast = prim__cast_IntegerDouble
export
Cast String Double where
cast = prim__cast_StringDouble
export
Cast Nat Double where
cast = prim__cast_IntegerDouble . natToInteger
------------
-- RANGES --
------------
public export
countFrom : n -> (n -> n) -> Stream n
countFrom start diff = start :: countFrom (diff start) diff
-- this and takeBefore are for range syntax, and not exported here since
-- they're partial. They are exported from Data.Stream instead.
partial
takeUntil : (n -> Bool) -> Stream n -> List n
takeUntil p (x :: xs)
= if p x
then [x]
else x :: takeUntil p xs
partial
takeBefore : (n -> Bool) -> Stream n -> List n
takeBefore p (x :: xs)
= if p x
then []
else x :: takeBefore p xs
public export
interface Range a where
rangeFromTo : a -> a -> List a
rangeFromThenTo : a -> a -> a -> List a
rangeFrom : a -> Stream a
rangeFromThen : a -> a -> Stream a
-- Idris 1 went to great lengths to prove that these were total. I don't really
-- think it's worth going to those lengths! Let's keep it simple and assert.
export
Range Nat where
rangeFromTo x y
= if y > x
then assert_total $ takeUntil (>= y) (countFrom x S)
else if x > y
then assert_total $ takeUntil (<= y) (countFrom x (\n => minus n 1))
else [x]
rangeFromThenTo x y z
= if y > x
then (if z > x
then assert_total $ takeBefore (> z) (countFrom x (plus (minus y x)))
else [])
else (if x == y
then (if x == z then [x] else [])
else assert_total $ takeBefore (< z) (countFrom x (\n => minus n (minus x y))))
rangeFrom x = countFrom x S
rangeFromThen x y
= if y > x
then countFrom x (plus (minus y x))
else countFrom x (\n => minus n (minus x y))
export
(Integral a, Ord a, Neg a) => Range a where
rangeFromTo x y
= if y > x
then assert_total $ takeUntil (>= y) (countFrom x (+1))
else if x > y
then assert_total $ takeUntil (<= y) (countFrom x (\x => x-1))
else [x]
rangeFromThenTo x y z
= if (z - x) > (z - y)
then -- go up
assert_total $ takeBefore (> z) (countFrom x (+ (y-x)))
else if (z - x) < (z - y)
then -- go down
assert_total $ takeBefore (< z) (countFrom x (\n => n - (x - y)))
else -- meaningless
if x == y && y == z
then [x] else []
rangeFrom x = countFrom x (1+)
rangeFromThen x y
= if y > x
then countFrom x (+ (y - x))
else countFrom x (\n => n - (x - y))