Idris2/libs/base/Data/List/Views.idr
Edwin Brady c88bf7af8d Fix import loading
This was taking too long, and adding too many things, because it was
going too deep in the name of having everything accessible at the REPL
and for the compiler. So, it's done a bit differently now, only chasing
everything on a "full" load (i.e., final load at the REPL)

This has some effects:
+ As systems get bigger, load time gets better (on my machine, checking
  Idris.Main now takes 52s from scratch, down from 76s)
+ You might find import errors that you didn't previously get, because
  things were being imported that shouldn't have been. The new way is
  correct!

An unfortunate effect is that sometimes you end up getting "undefined
name" errors even if you didn't explicitly use the name, because
sometimes a module uses a name from another module in a type, which then
gets exported, and eventually needs to be reduced. This mostly happens
because there is a compile time check that should be done which I
haven't implemented yet. That is, public export definitions should only
be allowed to use names that are also public export. I'll get to this
soon.
2020-05-27 15:49:03 +01:00

97 lines
3.3 KiB
Idris

module Data.List.Views
import Control.WellFounded
import Data.List
import Data.Nat
import Data.Nat.Views
lengthSuc : (xs : List a) -> (y : a) -> (ys : List a) ->
length (xs ++ (y :: ys)) = S (length (xs ++ ys))
lengthSuc [] _ _ = Refl
lengthSuc (x :: xs) y ys = cong S (lengthSuc xs y ys)
lengthLT : (xs : List a) -> (ys : List a) ->
LTE (length xs) (length (ys ++ xs))
lengthLT xs [] = lteRefl
lengthLT xs (x :: ys) = lteSuccRight (lengthLT _ _)
smallerLeft : (ys : List a) -> (y : a) -> (zs : List a) ->
LTE (S (S (length ys))) (S (length (ys ++ (y :: zs))))
smallerLeft [] y zs = LTESucc (LTESucc LTEZero)
smallerLeft (z :: ys) y zs = LTESucc (smallerLeft ys _ _)
smallerRight : (ys : List a) -> (zs : List a) ->
LTE (S (S (length zs))) (S (length (ys ++ (y :: zs))))
smallerRight {y} ys zs = rewrite lengthSuc ys y zs in
(LTESucc (LTESucc (lengthLT _ _)))
||| View for splitting a list in half, non-recursively
public export
data Split : List a -> Type where
SplitNil : Split []
SplitOne : (x : a) -> Split [x]
SplitPair : (x : a) -> (xs : List a) ->
(y : a) -> (ys : List a) ->
Split (x :: xs ++ y :: ys)
splitHelp : (head : a) ->
(xs : List a) ->
(counter : List a) -> Split (head :: xs)
splitHelp head [] counter = SplitOne _
splitHelp head (x :: xs) [] = SplitPair head [] x xs
splitHelp head (x :: xs) [y] = SplitPair head [] x xs
splitHelp head (x :: xs) (_ :: _ :: ys)
= case splitHelp head xs ys of
SplitOne x => SplitPair x [] _ []
SplitPair x' xs y' ys => SplitPair x' (x :: xs) y' ys
||| Covering function for the `Split` view
||| Constructs the view in linear time
export
split : (xs : List a) -> Split xs
split [] = SplitNil
split (x :: xs) = splitHelp x xs xs
public export
data SplitRec : List a -> Type where
SplitRecNil : SplitRec []
SplitRecOne : (x : a) -> SplitRec [x]
SplitRecPair : (lefts, rights : List a) -> -- Explicit, don't erase
(lrec : Lazy (SplitRec lefts)) ->
(rrec : Lazy (SplitRec rights)) -> SplitRec (lefts ++ rights)
||| Covering function for the `SplitRec` view
||| Constructs the view in O(n lg n)
public export total
splitRec : (xs : List a) -> SplitRec xs
splitRec xs with (sizeAccessible xs)
splitRec xs | acc with (split xs)
splitRec [] | acc | SplitNil = SplitRecNil
splitRec [x] | acc | SplitOne x = SplitRecOne x
splitRec (y :: ys ++ z :: zs) | Access acc | SplitPair y ys z zs
= SplitRecPair _ _
(splitRec (y :: ys) | acc _ (smallerLeft ys z zs))
(splitRec (z :: zs) | acc _ (smallerRight ys zs))
||| View for traversing a list backwards
public export
data SnocList : List a -> Type where
Empty : SnocList []
Snoc : (x : a) -> (xs : List a) ->
(rec : SnocList xs) -> SnocList (xs ++ [x])
snocListHelp : {input : _} ->
SnocList input -> (rest : List a) -> SnocList (input ++ rest)
snocListHelp snoc [] = rewrite appendNilRightNeutral input in snoc
snocListHelp snoc (x :: xs)
= rewrite appendAssociative input [x] xs in
snocListHelp (Snoc x input snoc) xs
||| Covering function for the `SnocList` view
||| Constructs the view in linear time
export
snocList : (xs : List a) -> SnocList xs
snocList xs = snocListHelp Empty xs