Idris2/libs/contrib/Data/Telescope/Segment.idr
Denis Buzdalov b355b12cdb Some cleanup was done. Changed code is mosly equivalent to the former.
A lot of useless matches of implicit arguments were removed.
2021-02-16 19:05:33 +00:00

276 lines
11 KiB
Idris

||| A segment is a compositional fragment of a telescope.
||| A key difference is that segments are right-nested, whereas
||| telescopes are left nested.
||| So telescopes are convenient for well-bracketing dependencies,
||| but segments are convenient for processing telescopes from left
||| to right.
|||
||| As with telescopes, indexing segments by their length (hopefully)
||| helps the type-checker infer stuff.
module Data.Telescope.Segment
import Data.Telescope.Telescope
import Syntax.PreorderReasoning
import Data.Fin
import Data.Nat
import Data.DPair
%default total
||| A segment is a compositional fragment of a telescope, indexed by
||| the segment's length.
public export
data Segment : (n : Nat) -> Left.Telescope k -> Type where
Nil : Segment 0 gamma
(::) : (ty : TypeIn gamma) -> (delta : Segment n (gamma -. ty)) -> Segment (S n) gamma
||| A segment of size `n` indexed by `gamma` can be seen as the tabulation of a
||| function that turns environments for `gamma` into telescopes of size `n`.
public export
tabulate : (n : Nat) -> (Left.Environment gamma -> Left.Telescope n) -> Segment n gamma
tabulate Z tel = []
tabulate (S n) tel = (sigma :: tabulate n (uncurry delta)) where
sigma : TypeIn gamma
sigma env = fst (uncons (tel env))
delta : (env : Environment gamma) -> sigma env -> Left.Telescope n
delta env v with (uncons (tel env))
delta env v | (sig ** delt ** _) = delt v
||| Any telescope is a segment in the empty telescope. It amounts to looking
||| at it left-to-right instead of right-to-left.
public export
fromTelescope : {k : Nat} -> Left.Telescope k -> Segment k []
fromTelescope gamma = tabulate _ (const gamma)
||| Conversely, a segment of size `n` in telescope `gamma` can be seen as a function
||| from environments for `gamma` to telescopes of size `n`.
public export
untabulate : {n : Nat} -> Segment n gamma -> (Left.Environment gamma -> Left.Telescope n)
untabulate [] _ = []
untabulate (ty :: delta) env = cons (ty env) (untabulate delta . (\ v => (env ** v)))
||| Any segment in the empty telescope correspond to a telescope.
public export
toTelescope : {k : Nat} -> Segment k [] -> Left.Telescope k
toTelescope seg = untabulate seg ()
%name Segment delta,delta',delta1,delta2
infixl 3 |++, :++
||| This lemma comes up all the time when mixing induction on Nat with
||| indexing modulo addition. An alternative is to use something like
||| frex.
succLemma : (lft, rgt : Nat) -> lft + (S rgt) = S (lft + rgt)
succLemma x y = Calc $
|~ x + (1 + y)
~~ (x + 1)+ y ...(plusAssociative x 1 y)
~~ (1 + x)+ y ...(cong (+y) $ plusCommutative x 1)
~~ 1 + (x + y) ...(sym $ plusAssociative 1 x y)
-- Should go somehwere in stdlib
public export
keep : (0 prf : a ~=~ b) -> a ~=~ b
keep Refl = Refl
-- Keeping the `Nat` argument relevant, should (hopefully) only
-- case-split on it and not the environment unnecessarily, allowing us
-- to calculate, so long as we know the 'shape' of the Segment.
--
-- This should work in theory, I don't think it actually works for
-- Idris at the moment. Might work in Agda?
||| Segments act on telescope from the right.
public export
(|++) : (gamma : Left.Telescope k) -> {n : Nat} -> (delta : Segment n gamma) -> Left.Telescope (n + k)
(|++) gamma {n = 0} delta = gamma
(|++) gamma {n=S n} (ty :: delta) = rewrite sym $ succLemma n k in
gamma -. ty |++ delta
||| Segments form a kind of an indexed monoid w.r.t. the action `(|++)`
public export
(++) : {gamma : Left.Telescope k}
-> {n : Nat}
-> (lft : Segment n gamma )
-> (rgt : Segment m (gamma |++ lft))
-> Segment (n + m) gamma
(++) {n = 0 } delta rgt = rgt
(++) {n = S n} (ty :: lft) rgt = ty :: lft ++ rewrite succLemma n k in
rgt
-- This monoid does act on telescopes:
export
actSegmentAssociative : (gamma : Left.Telescope k)
-> (lft : Segment n gamma)
-> (rgt : Segment m (gamma |++ lft))
-> (gamma |++ (lft ++ rgt)) ~=~ ((gamma |++ lft) |++ rgt)
actSegmentAssociative gamma {n = 0} [] rgt = Refl
actSegmentAssociative gamma {n = S n} (ty :: lft) rgt =
let rgt' : Segment {k = n + (S k)} m (gamma -. ty |++ lft)
rgt' = rewrite succLemma n k in
rgt
rgt_eq_rgt' : rgt ~=~ rgt'
rgt_eq_rgt' = rewrite succLemma n k in
Refl
in
rewrite sym $ succLemma (n + m) k in
rewrite sym $ succLemma n k in keep $ Calc $
|~ ((gamma -. ty) |++ (lft ++ rgt'))
~~ ((gamma -. ty |++ lft) |++ rgt')
...(actSegmentAssociative (gamma -. ty) lft rgt')
public export
weaken : {0 gamma : Left.Telescope k}
-> {delta : Segment n gamma} -> (sy : TypeIn gamma)
-> TypeIn (gamma |++ delta)
weaken {delta = [] } sy = sy
weaken {n = S n} {delta = ty :: delta} sy = rewrite sym $ succLemma n k in
weaken (weakenTypeIn sy)
public export
projection : {0 gamma : Left.Telescope k}
-> {n : Nat}
-> {0 delta : Segment n gamma}
-> Environment (gamma |++ delta)
-> Environment gamma
projection {n = 0 } {delta = [] } env = env
projection {n = S n} {delta = ty :: delta} env = let (env' ** _) = projection {n} {delta}
rewrite succLemma n k in env
in env'
infixl 4 .=
public export
data Environment : (env : Left.Environment gamma)
-> (delta : Segment n gamma) -> Type where
Empty : Environment env []
(.=) : {0 gamma : Left.Telescope k} -> {0 ty : TypeIn gamma}
-> {0 env : Left.Environment gamma}
-> {0 delta : Segment n (gamma -. ty)}
-> (x : ty env) -> (xs : Segment.Environment (env ** x) delta)
-> Environment env (ty :: delta)
public export
(:++) : {0 gamma : Left.Telescope k} -> {0 delta : Segment n gamma}
-> (env : Left.Environment gamma)
-> (ext : Segment.Environment env delta)
-> Left.Environment (gamma |++ delta)
(:++) env Empty = env
(:++) {n = S n} env (x .= xs) = rewrite sym $ succLemma n k in
(env ** x) :++ xs
-- This is too nasty for now, leave to later
{-
public export
break : {0 k : Nat} -> (gamma : Telescope k') -> (pos : Position gamma)
-> {auto 0 ford : k' = cast pos + k } -> Telescope k
break gamma FZ {ford = Refl} = gamma
break [] (FS pos) {ford = _ } impossible
break {k' = S k'} (gamma -. ty) (FS pos) {ford} = break gamma pos
{ford = Calc $
|~ k'
~~ cast pos + k ...(succInjective _ _ ford)}
-- Should go into Data.Fin
export
lastIsLast : {n : Nat} -> cast (last {n}) = n
lastIsLast {n = 0 } = Refl
lastIsLast {n = S n} = rewrite lastIsLast {n} in
Refl
public export
finComplement : {n : Nat} -> (i : Fin n) -> Fin n
finComplement FZ = last
finComplement (FS i) = weaken (finComplement i)
export
castNaturality : (i : Fin n) -> finToNat (weaken i) ~=~ finToNat i
castNaturality FZ = Refl
castNaturality (FS i) = rewrite castNaturality i in
Refl
export
finComplementSpec : (i : Fin (S n)) -> cast i + cast (finComplement i) = n
finComplementSpec FZ = keep lastIsLast
finComplementSpec {n = .(S n)} (FS i@ FZ ) = rewrite castNaturality (finComplement i) in
rewrite finComplementSpec i in
Refl
finComplementSpec {n = .(S n)} (FS i@(FS _)) = rewrite castNaturality (finComplement i) in
rewrite finComplementSpec i in
Refl
complementLastZero : (n : Nat) -> finComplement (last {n}) = FZ
complementLastZero n = finToNatInjective _ _ $ plusLeftCancel n _ _ $ Calc $
let n' : Nat
n' = cast $ finComplement $ last {n} in
|~ n + n'
~~ (finToNat $ last {n}) + n'
...(cong (+n') $ sym $ lastIsLast {n})
~~ n ...(finComplementSpec $ last {n})
~~ n + 0 ...(sym $ plusZeroRightNeutral n)
public export
breakOnto : {0 k,k' : Nat} -> (gamma : Telescope k) -> (pos : Position gamma)
-> (delta : Segment n gamma)
-> {auto 0 ford1 : k' === (finToNat $ finComplement pos) }
-> {default
-- disgusting, sorry
(replace {p = \u => k = finToNat pos + u}
(sym ford1)
(sym $ finComplementSpec pos))
0 ford2 : (k === ((finToNat pos) + k')) }
-> Segment (cast pos + n)
(break {k = k'}
gamma pos
{ford = ford2})
breakOnto gamma FZ delta {ford1 = Refl} {ford2} =
rewrite sym ford2 in
delta
breakOnto (gamma -. ty) (FS pos) delta {ford1 = Refl} {ford2} =
rewrite sym $ succLemma (cast pos) n in
rewrite castNaturality (finComplement pos) in
breakOnto gamma pos (ty :: delta)
uip : (prf1, prf2 : x ~=~ y) -> prf1 ~=~ prf2
uip Refl Refl = Refl
export
breakStartEmpty : (gamma : Telescope k')
-> {auto 0 ford1 : k = 0}
-> {auto 0 ford2 : k' = finToNat (start gamma) + k}
-> break {k} {k'} gamma (start gamma) {ford = ford2}
~=~ Telescope.Nil
breakStartEmpty [] {ford1 = Refl} {ford2 = Refl} = Refl
breakStartEmpty {k} {k' = S k'} {ford1} {ford2} (gamma -. ty) =
-- Yuck!
let 0 u : (k' = finToNat (start gamma) + k)
u = succInjective _ _ ford2
v : break {k} {k'} gamma (start gamma) {ford = u}
~=~ Telescope.Nil
v = breakStartEmpty {k} {k'} gamma {ford2 = u}
in replace {p = \z =>
Equal {a = Telescope k} {b = Telescope 0}
(break {k'} {k} gamma (start gamma)
{ford = z})
[]
}
(uip u _)
(keep v)
public export
projection : {0 gamma : Telescope k} -> (pos : Position gamma) -> (env : Environment gamma)
-> Environment (break {k = cast (finComplement pos)} gamma pos
{ford = sym $ finComplementSpec pos})
projection FZ env = rewrite finComplementSpec $ FZ {k} in
env
projection {gamma = []} (FS pos) Empty impossible
projection {k = S k} {gamma = gamma -. ty} (FS pos) (env ** x) =
rewrite castNaturality (finComplement pos) in
projection {k} pos env
-}