mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-21 02:31:50 +03:00
475 lines
21 KiB
Idris
475 lines
21 KiB
Idris
module Data.Nat.Factor
|
||
|
||
import Syntax.PreorderReasoning
|
||
import Control.WellFounded
|
||
import Data.Fin
|
||
import Data.Fin.Extra
|
||
import Data.Nat
|
||
import Data.Nat.Order.Properties
|
||
import Data.Nat.Equational
|
||
import Data.Nat.Division
|
||
|
||
%default total
|
||
|
||
||| Factor n p is a witness that p is indeed a factor of n,
|
||
||| i.e. there exists a q such that p * q = n.
|
||
public export
|
||
data Factor : Nat -> Nat -> Type where
|
||
CofactorExists : {p, n : Nat} -> (q : Nat) -> n = p * q -> Factor p n
|
||
|
||
||| NotFactor n p is a witness that p is NOT a factor of n,
|
||
||| i.e. there exist a q and an r, greater than 0 but smaller than p,
|
||
||| such that p * q + r = n.
|
||
public export
|
||
data NotFactor : Nat -> Nat -> Type where
|
||
ZeroNotFactorS : (n : Nat) -> NotFactor Z (S n)
|
||
ProperRemExists : {p, n : Nat} -> (q : Nat) ->
|
||
(r : Fin (pred p)) ->
|
||
n = p * q + S (finToNat r) ->
|
||
NotFactor p n
|
||
|
||
||| DecFactor n p is a result of the process which decides
|
||
||| whether or not p is a factor on n.
|
||
public export
|
||
data DecFactor : Nat -> Nat -> Type where
|
||
ItIsFactor : Factor p n -> DecFactor p n
|
||
ItIsNotFactor : NotFactor p n -> DecFactor p n
|
||
|
||
||| CommonFactor n m p is a witness that p is a factor of both n and m.
|
||
public export
|
||
data CommonFactor : Nat -> Nat -> Nat -> Type where
|
||
CommonFactorExists : {a, b : Nat} -> (p : Nat) -> Factor p a -> Factor p b -> CommonFactor p a b
|
||
|
||
||| GCD n m p is a witness that p is THE greatest common factor of both n and m.
|
||
||| The second argument to the constructor is a function which for all q being
|
||
||| a factor of both n and m, proves that q is a factor of p.
|
||
|||
|
||
||| This is equivalent to a more straightforward definition, stating that for
|
||
||| all q being a factor of both n and m, q is less than or equal to p, but more
|
||
||| powerful and therefore more useful for further proofs. See below for a proof
|
||
||| that if q is a factor of p then q must be less than or equal to p.
|
||
public export
|
||
data GCD : Nat -> Nat -> Nat -> Type where
|
||
MkGCD : {a, b, p : Nat} ->
|
||
{auto notBothZero : NotBothZero a b} ->
|
||
(Lazy (CommonFactor p a b)) ->
|
||
((q : Nat) -> CommonFactor q a b -> Factor q p) ->
|
||
GCD p a b
|
||
|
||
|
||
Uninhabited (Factor Z (S n)) where
|
||
uninhabited (CofactorExists q prf) = uninhabited prf
|
||
|
||
||| Given a statement that p is factor of n, return its cofactor.
|
||
export
|
||
cofactor : Factor p n -> (q : Nat ** Factor q n)
|
||
cofactor (CofactorExists q prf) =
|
||
(q ** CofactorExists p $ rewrite multCommutative q p in prf)
|
||
|
||
||| 1 is a factor of any natural number.
|
||
export
|
||
oneIsFactor : (n : Nat) -> Factor 1 n
|
||
oneIsFactor Z = CofactorExists Z Refl
|
||
oneIsFactor (S k) = CofactorExists (S k) (rewrite plusZeroRightNeutral k in Refl)
|
||
|
||
||| 1 is the only factor of itself
|
||
export
|
||
oneSoleFactorOfOne : (a : Nat) -> Factor a 1 -> a = 1
|
||
oneSoleFactorOfOne 0 (CofactorExists _ prf) = sym prf
|
||
oneSoleFactorOfOne 1 _ = Refl
|
||
oneSoleFactorOfOne (S (S k)) (CofactorExists Z prf) =
|
||
absurd . uninhabited $ trans prf $ multCommutative k 0
|
||
oneSoleFactorOfOne (S (S k)) (CofactorExists (S j) prf) =
|
||
absurd . uninhabited $
|
||
trans
|
||
(injective prf)
|
||
(plusCommutative j (S (j + (k * S j))))
|
||
|
||
||| Every natural number is factor of itself.
|
||
export
|
||
Reflexive Nat Factor where
|
||
reflexive = CofactorExists 1 $ rewrite multOneRightNeutral x in Refl
|
||
|
||
||| Factor relation is transitive. If b is factor of a and c is b factor of c
|
||
||| is also a factor of a.
|
||
export
|
||
Transitive Nat Factor where
|
||
transitive (CofactorExists qb prfAB) (CofactorExists qc prfBC) =
|
||
CofactorExists (qb * qc) $
|
||
rewrite prfBC in
|
||
rewrite prfAB in
|
||
rewrite multAssociative x qb qc in
|
||
Refl
|
||
|
||
export
|
||
Preorder Nat Factor where
|
||
|
||
multOneSoleNeutral : (a, b : Nat) -> S a = S a * b -> b = 1
|
||
multOneSoleNeutral Z b prf =
|
||
rewrite sym $ plusZeroRightNeutral b in
|
||
sym prf
|
||
multOneSoleNeutral (S k) Z prf =
|
||
absurd . uninhabited $ trans prf $ multCommutative k 0
|
||
multOneSoleNeutral (S k) (S Z) prf = Refl
|
||
multOneSoleNeutral (S k) (S (S j)) prf =
|
||
absurd . uninhabited .
|
||
subtractEqLeft k {c = S j + S (j + (k * S j))} $
|
||
rewrite plusSuccRightSucc j (S (j + (k * S j))) in
|
||
rewrite plusZeroRightNeutral k in
|
||
rewrite plusAssociative k j (S (S (j + (k * S j)))) in
|
||
rewrite sym $ plusCommutative j k in
|
||
rewrite sym $ plusAssociative j k (S (S (j + (k * S j)))) in
|
||
rewrite sym $ plusSuccRightSucc k (S (j + (k * S j))) in
|
||
rewrite sym $ plusSuccRightSucc k (j + (k * S j)) in
|
||
rewrite plusAssociative k j (k * S j) in
|
||
rewrite plusCommutative k j in
|
||
rewrite sym $ plusAssociative j k (k * S j) in
|
||
rewrite sym $ multRightSuccPlus k (S j) in
|
||
injective $ injective prf
|
||
|
||
||| If a is a factor of b and b is a factor of a, then a = b.
|
||
public export
|
||
Antisymmetric Nat Factor where
|
||
antisymmetric {x = Z} (CofactorExists _ prfAB) _ = sym prfAB
|
||
antisymmetric {y = Z} _ (CofactorExists _ prfBA) = prfBA
|
||
antisymmetric {x = S a} {y = S _} (CofactorExists qa prfAB) (CofactorExists qb prfBA) =
|
||
let qIs1 = multOneSoleNeutral a (qa * qb) $
|
||
rewrite multAssociative (S a) qa qb in
|
||
rewrite sym prfAB in
|
||
prfBA
|
||
in
|
||
rewrite prfAB in
|
||
rewrite oneSoleFactorOfOne qa . CofactorExists qb $ sym qIs1 in
|
||
rewrite multOneRightNeutral a in
|
||
Refl
|
||
|
||
PartialOrder Nat Factor where
|
||
|
||
||| No number can simultaneously be and not be a factor of another number.
|
||
export
|
||
factorNotFactorAbsurd : Factor p n -> Not (NotFactor p n)
|
||
factorNotFactorAbsurd (CofactorExists _ prf) (ZeroNotFactorS _) =
|
||
uninhabited prf
|
||
factorNotFactorAbsurd (CofactorExists q prf) (ProperRemExists q' r contra) with (cmp q q')
|
||
factorNotFactorAbsurd (CofactorExists q prf) (ProperRemExists (q + S d) r contra) | CmpLT d =
|
||
SIsNotZ .
|
||
subtractEqLeft (p * q) {b = S ((p * S d) + finToNat r)} $
|
||
rewrite plusZeroRightNeutral (p * q) in
|
||
rewrite plusSuccRightSucc (p * S d) (finToNat r) in
|
||
rewrite plusAssociative (p * q) (p * S d) (S (finToNat r)) in
|
||
rewrite sym $ multDistributesOverPlusRight p q (S d) in
|
||
rewrite sym contra in
|
||
rewrite sym prf in
|
||
Refl
|
||
factorNotFactorAbsurd (CofactorExists q prf) (ProperRemExists q r contra) | CmpEQ =
|
||
SIsNotZ $ sym $
|
||
plusLeftCancel (p * q) 0 (S (finToNat r)) $
|
||
trans (plusZeroRightNeutral (p * q)) $
|
||
trans (sym prf) contra
|
||
factorNotFactorAbsurd (CofactorExists (q + S d) prf) (ProperRemExists q r contra) | CmpGT d =
|
||
let srEQpPlusPD = the (p + (p * d) = S (finToNat r)) $
|
||
rewrite sym $ multRightSuccPlus p d in
|
||
subtractEqLeft (p * q) $
|
||
rewrite sym $ multDistributesOverPlusRight p q (S d) in
|
||
rewrite sym contra in
|
||
sym prf
|
||
in
|
||
case p of
|
||
Z => uninhabited srEQpPlusPD
|
||
(S k) =>
|
||
succNotLTEzero .
|
||
subtractLteLeft k {b = S (d + (k * d))} $
|
||
rewrite sym $ plusSuccRightSucc k (d + (k * d)) in
|
||
rewrite plusZeroRightNeutral k in
|
||
rewrite srEQpPlusPD in
|
||
elemSmallerThanBound r
|
||
|
||
||| Anything is a factor of 0.
|
||
export
|
||
anythingFactorZero : (a : Nat) -> Factor a 0
|
||
anythingFactorZero a = CofactorExists 0 (sym $ multZeroRightZero a)
|
||
|
||
||| For all natural numbers p and q, p is a factor of (p * q).
|
||
export
|
||
multFactor : (p, q : Nat) -> Factor p (p * q)
|
||
multFactor p q = CofactorExists q Refl
|
||
|
||
||| If n > 0 then any factor of n must be less than or equal to n.
|
||
export
|
||
factorLteNumber : Factor p n -> {auto positN : LTE 1 n} -> LTE p n
|
||
factorLteNumber (CofactorExists Z prf) =
|
||
let nIsZero = trans prf $ multCommutative p 0
|
||
oneLteZero = replace {p = LTE 1} nIsZero positN
|
||
in
|
||
absurd $ succNotLTEzero oneLteZero
|
||
factorLteNumber (CofactorExists (S k) prf) =
|
||
rewrite prf in
|
||
leftFactorLteProduct p k
|
||
|
||
||| If p is a factor of n, then it is also a factor of (n + p).
|
||
export
|
||
plusDivisorAlsoFactor : Factor p n -> Factor p (n + p)
|
||
plusDivisorAlsoFactor (CofactorExists q prf) =
|
||
CofactorExists (S q) $
|
||
rewrite plusCommutative n p in
|
||
rewrite multRightSuccPlus p q in
|
||
cong (plus p) prf
|
||
|
||
||| If p is NOT a factor of n, then it also is NOT a factor of (n + p).
|
||
export
|
||
plusDivisorNeitherFactor : NotFactor p n -> NotFactor p (n + p)
|
||
plusDivisorNeitherFactor (ZeroNotFactorS k) =
|
||
rewrite plusZeroRightNeutral k in
|
||
ZeroNotFactorS k
|
||
plusDivisorNeitherFactor (ProperRemExists q r remPrf) =
|
||
ProperRemExists (S q) r $
|
||
rewrite multRightSuccPlus p q in
|
||
rewrite sym $ plusAssociative p (p * q) (S $ finToNat r) in
|
||
rewrite plusCommutative p ((p * q) + S (finToNat r)) in
|
||
rewrite remPrf in
|
||
Refl
|
||
|
||
||| If p is a factor of n, then it is also a factor of any multiply of n.
|
||
export
|
||
multNAlsoFactor : Factor p n -> (a : Nat) -> {auto aok : LTE 1 a} -> Factor p (n * a)
|
||
multNAlsoFactor _ Z = absurd $ succNotLTEzero aok
|
||
multNAlsoFactor (CofactorExists q prf) (S a) =
|
||
CofactorExists (q * S a) $
|
||
rewrite prf in
|
||
sym $ multAssociative p q (S a)
|
||
|
||
||| If p is a factor of both n and m, then it is also a factor of their sum.
|
||
export
|
||
plusFactor : Factor p n -> Factor p m -> Factor p (n + m)
|
||
plusFactor (CofactorExists qn prfN) (CofactorExists qm prfM) =
|
||
rewrite prfN in
|
||
rewrite prfM in
|
||
rewrite sym $ multDistributesOverPlusRight p qn qm in
|
||
multFactor p (qn + qm)
|
||
|
||
||| If p is a factor of a sum (n + m) and a factor of n, then it is also
|
||
||| a factor of m. This could be expressed more naturally with minus, but
|
||
||| it would be more difficult to prove, since minus lacks certain properties
|
||
||| that one would expect from decent subtraction.
|
||
export
|
||
minusFactor : {b : Nat} -> Factor p (a + b) -> Factor p a -> Factor p b
|
||
minusFactor (CofactorExists qab prfAB) (CofactorExists qa prfA) =
|
||
CofactorExists (minus qab qa) $
|
||
rewrite multDistributesOverMinusRight p qab qa in
|
||
rewrite sym prfA in
|
||
rewrite sym prfAB in
|
||
replace {p = \x => b = minus (a + b) x} (plusZeroRightNeutral a) $
|
||
rewrite plusMinusLeftCancel a b 0 in
|
||
rewrite minusZeroRight b in
|
||
Refl
|
||
|
||
||| If p is a common factor of n and mod m n, then it is also a factor of m.
|
||
export
|
||
modFactorAlsoFactorOfDivider : {m, n, p : Nat} -> {auto 0 nNotZ : NonZero n} -> Factor p n -> Factor p (modNatNZ m n nNotZ) -> Factor p m
|
||
modFactorAlsoFactorOfDivider (CofactorExists qn prfN) (CofactorExists qModMN prfModMN) =
|
||
CofactorExists (qModMN + divNatNZ m n nNotZ * qn) $ Calc $
|
||
|~ m
|
||
~~ modNatNZ m n nNotZ + divNatNZ m n nNotZ * n ...(DivisionTheorem m n nNotZ nNotZ)
|
||
~~ qModMN * p + divNatNZ m n nNotZ * (qn * p)
|
||
...(rewrite multCommutative qModMN p in
|
||
rewrite multCommutative qn p in
|
||
cong2 (+) prfModMN $ cong ((*) (divNatNZ m n nNotZ)) prfN)
|
||
~~ qModMN * p + (divNatNZ m n nNotZ * qn) * p
|
||
...(cong ((+) (qModMN * p)) $ multAssociative (divNatNZ m n nNotZ) qn p)
|
||
~~ (qModMN + divNatNZ m n nNotZ * qn) * p ...(sym $ multDistributesOverPlusLeft qModMN _ p)
|
||
~~ p * (qModMN + divNatNZ m n nNotZ * qn) ...(multCommutative _ p)
|
||
|
||
||| If p is a common factor of m and n, then it is also a factor of their mod.
|
||
export
|
||
commonFactorAlsoFactorOfMod : {0 m, n, p : Nat} -> {auto 0 nNotZ : NonZero n} -> Factor p m -> Factor p n -> Factor p (modNatNZ m n nNotZ)
|
||
commonFactorAlsoFactorOfMod (CofactorExists qm prfM) (CofactorExists qn prfN) =
|
||
CofactorExists (qm `minus` divNatNZ (qm * p) n nNotZ * qn) $
|
||
rewrite prfM in
|
||
rewrite multCommutative p qm
|
||
in Calc $
|
||
|~ (modNatNZ (qm * p) n nNotZ)
|
||
~~ (qm * p `minus` divNatNZ (qm * p) n nNotZ * n) ...(modDividendMinusDivMultDivider (qm * p) n)
|
||
~~ (qm * p `minus` divNatNZ (qm * p) n nNotZ * (qn * p))
|
||
...(rewrite multCommutative qn p in
|
||
cong (\v => qm * p `minus` divNatNZ (qm * p) n nNotZ * v) prfN)
|
||
~~ (qm * p `minus` divNatNZ (qm * p) n nNotZ * qn * p)
|
||
...(cong (minus (qm * p)) $ multAssociative (divNatNZ (qm * p) n nNotZ) qn p)
|
||
~~ (qm `minus` (divNatNZ (qm * p) n nNotZ * qn)) * p
|
||
...(sym $ multDistributesOverMinusLeft qm (divNatNZ (qm * p) n nNotZ * qn) p)
|
||
~~ p * (qm `minus` (divNatNZ (qm * p) n nNotZ * qn)) ...(multCommutative _ p)
|
||
|
||
||| A decision procedure for whether of not p is a factor of n.
|
||
export
|
||
decFactor : (n, d : Nat) -> DecFactor d n
|
||
decFactor Z Z = ItIsFactor $ reflexive
|
||
decFactor (S k) Z = ItIsNotFactor $ ZeroNotFactorS k
|
||
decFactor n (S d) =
|
||
let Fraction n (S d) q r prf = Data.Fin.Extra.divMod n (S d) in
|
||
case r of
|
||
FZ =>
|
||
ItIsFactor $ CofactorExists q $
|
||
rewrite sym prf in
|
||
rewrite plusCommutative (q * (S d)) 0 in
|
||
multCommutative q (S d)
|
||
|
||
(FS pr) =>
|
||
ItIsNotFactor $ ProperRemExists q pr (
|
||
rewrite multCommutative d q in
|
||
rewrite sym $ multRightSuccPlus q d in
|
||
sym prf
|
||
)
|
||
|
||
||| For all p greater than 1, if p is a factor of n, then it is NOT a factor
|
||
||| of (n + 1).
|
||
export
|
||
factNotSuccFact : {p : Nat} -> GT p 1 -> Factor p n -> NotFactor p (S n)
|
||
factNotSuccFact {p = Z} pGt1 (CofactorExists q prf) =
|
||
absurd $ succNotLTEzero pGt1
|
||
factNotSuccFact {p = S Z} pGt1 (CofactorExists q prf) =
|
||
absurd . succNotLTEzero $ fromLteSucc pGt1
|
||
factNotSuccFact {p = S (S k)} pGt1 (CofactorExists q prf) =
|
||
ProperRemExists q FZ (
|
||
rewrite sym prf in
|
||
rewrite plusCommutative n 1 in
|
||
Refl
|
||
)
|
||
|
||
using (p : Nat)
|
||
||| The relation of common factor is symmetric, that is if p is a
|
||
||| common factor of n and m, then it is also a common factor of
|
||
||| m and n.
|
||
public export
|
||
Symmetric Nat (CommonFactor p) where
|
||
symmetric (CommonFactorExists p pfx pfy) = CommonFactorExists p pfy pfx
|
||
|
||
||| The relation of greatest common divisor is symmetric.
|
||
public export
|
||
Symmetric Nat (GCD p) where
|
||
symmetric {x = Z} {y = Z} (MkGCD _ _) impossible
|
||
symmetric {x = S _} (MkGCD cf greatest) =
|
||
MkGCD (symmetric cf) $ \q, cf => greatest q $ symmetric cf
|
||
symmetric {y = S _} (MkGCD cf greatest) =
|
||
MkGCD (symmetric cf) $ \q, cf => greatest q $ symmetric cf
|
||
|
||
||| If p is a common factor of a and b, then it is also a factor of their GCD.
|
||
||| This actually follows directly from the definition of GCD.
|
||
export
|
||
commonFactorAlsoFactorOfGCD : {p : Nat} -> Factor p a -> Factor p b -> GCD q a b -> Factor p q
|
||
commonFactorAlsoFactorOfGCD pfa pfb (MkGCD _ greatest) =
|
||
greatest p (CommonFactorExists p pfa pfb)
|
||
|
||
||| 1 is a common factor of any pair of natural numbers.
|
||
export
|
||
oneCommonFactor : (a, b : Nat) -> CommonFactor 1 a b
|
||
oneCommonFactor a b = CommonFactorExists 1
|
||
(CofactorExists a (rewrite plusZeroRightNeutral a in Refl))
|
||
(CofactorExists b (rewrite plusZeroRightNeutral b in Refl))
|
||
|
||
||| Any natural number is a common factor of itself and itself.
|
||
export
|
||
selfIsCommonFactor : (a : Nat) -> {auto ok : LTE 1 a} -> CommonFactor a a a
|
||
selfIsCommonFactor a = CommonFactorExists a reflexive reflexive
|
||
|
||
gcdUnproven' : (m, n : Nat) -> (0 sizeM : SizeAccessible m) -> (0 n_lt_m : LT n m) -> Nat
|
||
gcdUnproven' m Z _ _ = m
|
||
gcdUnproven' m (S n) (Access rec) n_lt_m =
|
||
let mod_lt_n = boundModNatNZ m (S n) SIsNonZero in
|
||
gcdUnproven' (S n) (modNatNZ m (S n) SIsNonZero) (rec _ n_lt_m) mod_lt_n
|
||
|
||
||| Total definition of the gcd function. Does not return GСD evidence, but is faster.
|
||
gcdUnproven : Nat -> Nat -> Nat
|
||
gcdUnproven m n with (isLT n m)
|
||
gcdUnproven m n | Yes n_lt_m = gcdUnproven' m n (wellFounded m) n_lt_m
|
||
gcdUnproven m n | No not_n_lt_m with (decomposeLte m n $ notLTImpliesGTE not_n_lt_m)
|
||
gcdUnproven m n | No not_n_lt_m | Left m_lt_n = gcdUnproven' n m (wellFounded n) m_lt_n
|
||
gcdUnproven m n | No not_n_lt_m | Right m_eq_n = m
|
||
|
||
gcdUnproven'Greatest : {m, n, c : Nat} -> (0 sizeM : SizeAccessible m) -> (0 n_lt_m : LT n m)
|
||
-> Factor c m -> Factor c n -> Factor c (gcdUnproven' m n sizeM n_lt_m)
|
||
gcdUnproven'Greatest {n = Z} _ _ cFactM _ = cFactM
|
||
gcdUnproven'Greatest {n = S n} (Access rec) n_lt_m cFactM cFactN =
|
||
gcdUnproven'Greatest (rec _ n_lt_m) (boundModNatNZ m (S n) SIsNonZero) cFactN (commonFactorAlsoFactorOfMod cFactM cFactN)
|
||
|
||
gcdUnprovenGreatest : (m, n : Nat) -> {auto 0 ok : NotBothZero m n} -> (q : Nat) -> CommonFactor q m n -> Factor q (gcdUnproven m n)
|
||
gcdUnprovenGreatest m n q (CommonFactorExists q qFactM qFactN) with (isLT n m)
|
||
gcdUnprovenGreatest m n q (CommonFactorExists q qFactM qFactN) | Yes n_lt_m
|
||
= gcdUnproven'Greatest (sizeAccessible m) n_lt_m qFactM qFactN
|
||
gcdUnprovenGreatest m n q (CommonFactorExists q qFactM qFactN) | No not_n_lt_m with (decomposeLte m n $ notLTImpliesGTE not_n_lt_m)
|
||
gcdUnprovenGreatest m n q (CommonFactorExists q qFactM qFactN) | No not_n_lt_m | Left m_lt_n
|
||
= gcdUnproven'Greatest (sizeAccessible n) m_lt_n qFactN qFactM
|
||
gcdUnprovenGreatest Z Z q (CommonFactorExists q qFactM qFactN) | No not_n_lt_m | Right m_eq_n impossible
|
||
gcdUnprovenGreatest (S m) (S n) q (CommonFactorExists q qFactM qFactN) | No not_n_lt_m | Right m_eq_n = qFactM
|
||
|
||
gcdUnproven'CommonFactor : {m, n : Nat} -> (0 sizeM : SizeAccessible m) -> (0 n_lt_m : LT n m) -> CommonFactor (gcdUnproven' m n sizeM n_lt_m) m n
|
||
gcdUnproven'CommonFactor {n = Z} _ _ = CommonFactorExists _ reflexive (anythingFactorZero m)
|
||
gcdUnproven'CommonFactor {n = S n} (Access rec) n_lt_m with (gcdUnproven'CommonFactor (rec _ n_lt_m) (boundModNatNZ m (S n) SIsNonZero))
|
||
gcdUnproven'CommonFactor (Access rec) n_lt_m | (CommonFactorExists _ factM factN)
|
||
= CommonFactorExists _ (modFactorAlsoFactorOfDivider factM factN) factM
|
||
|
||
gcdUnprovenCommonFactor : (m, n : Nat) -> {auto 0 ok : NotBothZero m n} -> CommonFactor (gcdUnproven m n) m n
|
||
gcdUnprovenCommonFactor m n with (isLT n m)
|
||
gcdUnprovenCommonFactor m n | Yes n_lt_m = gcdUnproven'CommonFactor (sizeAccessible m) n_lt_m
|
||
gcdUnprovenCommonFactor m n | No not_n_lt_m with (decomposeLte m n $ notLTImpliesGTE not_n_lt_m)
|
||
gcdUnprovenCommonFactor m n | No not_n_lt_m | Left m_lt_n = symmetric $ gcdUnproven'CommonFactor (sizeAccessible n) m_lt_n
|
||
gcdUnprovenCommonFactor Z Z | No not_n_lt_m | Right m_eq_n impossible
|
||
gcdUnprovenCommonFactor (S m) (S n) | No not_n_lt_m | Right m_eq_n = rewrite m_eq_n in selfIsCommonFactor (S n)
|
||
|
||
||| An implementation of Euclidean Algorithm for computing greatest common
|
||
||| divisors. It is proven correct and total; returns a proof that computed
|
||
||| number actually IS the GCD.
|
||
export
|
||
gcd : (a, b : Nat) -> {auto ok : NotBothZero a b} -> (f : Nat ** GCD f a b)
|
||
gcd a b = (_ ** MkGCD (gcdUnprovenCommonFactor a b) (gcdUnprovenGreatest a b))
|
||
|
||
||| For every two natural numbers there is a unique greatest common divisor.
|
||
export
|
||
gcdUnique : GCD p a b -> GCD q a b -> p = q
|
||
gcdUnique (MkGCD pCFab greatestP) (MkGCD qCFab greatestQ) =
|
||
antisymmetric (greatestQ p pCFab) (greatestP q qCFab)
|
||
|
||
divByGcdHelper : (a, b, c : Nat) -> GCD (S a) (S a * S b) (S a * c) -> GCD 1 (S b) c
|
||
divByGcdHelper a b c (MkGCD _ greatest) =
|
||
MkGCD (CommonFactorExists 1 (oneIsFactor (S b)) (oneIsFactor c)) $
|
||
\q, (CommonFactorExists q (CofactorExists qb prfQB) (CofactorExists qc prfQC)) =>
|
||
let qFab = CofactorExists qb $
|
||
rewrite multCommutative q (S a) in
|
||
rewrite sym $ multAssociative (S a) q qb in
|
||
rewrite sym $ prfQB in
|
||
Refl
|
||
qFac = CofactorExists qc $
|
||
rewrite multCommutative q (S a) in
|
||
rewrite sym $ multAssociative (S a) q qc in
|
||
rewrite sym $ prfQC in
|
||
Refl
|
||
CofactorExists f prfQAfA =
|
||
greatest (q * S a) (CommonFactorExists (q * S a) qFab qFac)
|
||
qf1 = multOneSoleNeutral a (f * q) $
|
||
rewrite multCommutative f q in
|
||
rewrite multAssociative (S a) q f in
|
||
rewrite sym $ multCommutative q (S a) in
|
||
prfQAfA
|
||
in
|
||
CofactorExists f $
|
||
rewrite multCommutative q f in
|
||
sym qf1
|
||
|
||
||| For every two natural numbers, if we divide both of them by their GCD,
|
||
||| the GCD of resulting numbers will always be 1.
|
||
export
|
||
divByGcdGcdOne : {a, b, c : Nat} -> GCD a (a * b) (a * c) -> GCD 1 b c
|
||
divByGcdGcdOne {a = Z} (MkGCD _ _) impossible
|
||
divByGcdGcdOne {a = S a} {b = Z} {c = Z} (MkGCD {notBothZero} _ _) =
|
||
case replace {p = \x => NotBothZero x x} (multZeroRightZero (S a)) notBothZero of
|
||
LeftIsNotZero impossible
|
||
RightIsNotZero impossible
|
||
divByGcdGcdOne {a = S a} {b = Z} {c = S c} gcdPrf@(MkGCD {notBothZero} _ _) =
|
||
case replace {p = \x => NotBothZero x (S a * S c)} (multZeroRightZero (S a)) notBothZero of
|
||
LeftIsNotZero impossible
|
||
RightIsNotZero => symmetric $ divByGcdHelper a c Z $ symmetric gcdPrf
|
||
divByGcdGcdOne {a = S a} {b = S b} {c = Z} gcdPrf@(MkGCD {notBothZero} _ _) =
|
||
case replace {p = \x => NotBothZero (S a * S b) x} (multZeroRightZero (S a)) notBothZero of
|
||
RightIsNotZero impossible
|
||
LeftIsNotZero => divByGcdHelper a b Z gcdPrf
|
||
divByGcdGcdOne {a = S a} {b = S b} {c = S c} gcdPrf =
|
||
divByGcdHelper a b (S c) gcdPrf
|