mirror of
https://github.com/idris-lang/Idris2.git
synced 2025-01-08 08:52:22 +03:00
96 lines
3.5 KiB
Idris
96 lines
3.5 KiB
Idris
||| Additional properties/lemmata of Nats involving order
|
|
module Data.Nat.Order.Properties
|
|
|
|
import Syntax.PreorderReasoning
|
|
import Syntax.PreorderReasoning.Generic
|
|
import Data.Nat
|
|
import Data.Nat.Order
|
|
import Data.Nat.Order.Strict
|
|
import Decidable.Equality
|
|
import Decidable.Order
|
|
import Decidable.Order.Strict
|
|
import Data.Bool.Decidable
|
|
|
|
|
|
%default total
|
|
export
|
|
LTESuccInjectiveMonotone : (m, n : Nat) -> Reflects (m `LTE` n) b -> Reflects (S m `LTE` S n) b
|
|
LTESuccInjectiveMonotone m n (RTrue m_lte_n) = RTrue $ LTESucc m_lte_n
|
|
LTESuccInjectiveMonotone m n (RFalse not_m_lte_n) = RFalse $ \case
|
|
LTESucc m_lte_n => not_m_lte_n m_lte_n
|
|
|
|
export
|
|
lteReflection : (a, b : Nat) -> Reflects (a `LTE` b) (a `lte` b)
|
|
lteReflection 0 b = RTrue LTEZero
|
|
lteReflection (S k) 0 = RFalse \sk_lte_z => absurd sk_lte_z
|
|
lteReflection (S a) (S b) = LTESuccInjectiveMonotone a b (lteReflection a b)
|
|
|
|
-- For example:
|
|
export
|
|
lteIsLTE : (a, b : Nat) -> a `lte` b = True -> a `LTE` b
|
|
lteIsLTE a b prf = invert (replace {p = Reflects (a `LTE` b)} prf (lteReflection a b))
|
|
|
|
export
|
|
notlteIsLT : (a, b : Nat) -> a `lte` b = False -> b `LT` a
|
|
notlteIsLT a b prf = notLTImpliesGTE
|
|
\prf' =>
|
|
(invert $ replace {p = Reflects (S a `LTE` S b)} prf
|
|
$ lteReflection (S a) (S b)) prf'
|
|
|
|
|
|
-- The converse to lteIsLTE:
|
|
export
|
|
LteIslte : (a, b : Nat) -> a `LTE` b -> a `lte` b = True
|
|
LteIslte a b a_lt_b = reflect (lteReflection a b) a_lt_b
|
|
|
|
-- The converse to lteIsLTE with negation
|
|
export
|
|
notLteIsnotlte : (a, b : Nat) -> Not (a `LTE` b) -> a `lte` b = False
|
|
notLteIsnotlte a b not_a_lte_b = reflect (lteReflection a b) not_a_lte_b
|
|
|
|
-- The converse to lteIsLTE:
|
|
export
|
|
GTIsnotlte : (a, b : Nat) -> b `LT` a -> a `lte` b = False
|
|
GTIsnotlte a b b_lt_a =
|
|
let not_a_lte_b : Not (a `LTE` b)
|
|
not_a_lte_b = \a_lte_b => irreflexive {spo = Nat.LT} a $ CalcWith {leq = LTE} $
|
|
|~ 1 + a
|
|
<~ 1 + b ...(plusLteMonotoneLeft 1 a b a_lte_b)
|
|
<~ a ...(b_lt_a)
|
|
in notLteIsnotlte a b not_a_lte_b
|
|
|
|
||| Subtracting a number gives a smaller number
|
|
export
|
|
minusLTE : (a,b : Nat) -> (b `minus` a) `LTE` b
|
|
minusLTE a 0 = LTEZero
|
|
minusLTE 0 (S b) = reflexive (S b)
|
|
minusLTE (S a) (S b) = transitive (minus b a) b (S b)
|
|
(minusLTE a b)
|
|
(lteSuccRight (reflexive b))
|
|
|
|
||| Subtracting a positive number gives a strictly smaller number
|
|
export
|
|
minusPosLT : (a,b : Nat) -> 0 `LT` a -> a `LTE` b -> (b `minus` a) `LT` b
|
|
minusPosLT 0 b z_lt_z a_lte_b impossible
|
|
minusPosLT (S a) 0 z_lt_sa a_lte_b impossible
|
|
minusPosLT (S a) (S b) z_lt_sa a_lte_b = LTESucc (minusLTE a b)
|
|
|
|
-- This is the opposite of the convention in `Data.Nat`, but 'monotone on the left' means the below
|
|
export
|
|
multLteMonotoneRight : (l, a, b : Nat) -> a `LTE` b -> l*a `LTE` l*b
|
|
multLteMonotoneRight 0 a b _ = LTEZero
|
|
multLteMonotoneRight (S k) a b a_lte_b = CalcWith {leq = LTE} $
|
|
|~ (1 + k) * a
|
|
~~ a + k*a ...(Refl)
|
|
<~ b + k*a ...(plusLteMonotoneRight (k*a) a b a_lte_b)
|
|
<~ b + k*b ...(plusLteMonotoneLeft b (k*a) (k*b) $
|
|
multLteMonotoneRight k a b a_lte_b)
|
|
~~ (1 + k) * b ...(Refl)
|
|
|
|
export
|
|
multLteMonotoneLeft : (a, b, r : Nat) -> a `LTE` b -> a*r `LTE` b*r
|
|
multLteMonotoneLeft a b r a_lt_b =
|
|
rewrite multCommutative a r in
|
|
rewrite multCommutative b r in
|
|
multLteMonotoneRight r a b a_lt_b
|