mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-21 02:31:50 +03:00
771 lines
21 KiB
Idris
771 lines
21 KiB
Idris
module Data.Nat
|
|
|
|
%default total
|
|
|
|
export
|
|
Uninhabited (Z = S n) where
|
|
uninhabited Refl impossible
|
|
|
|
export
|
|
Uninhabited (S n = Z) where
|
|
uninhabited Refl impossible
|
|
|
|
export
|
|
Uninhabited (a = b) => Uninhabited (S a = S b) where
|
|
uninhabited Refl @{ab} = uninhabited @{ab} Refl
|
|
|
|
public export
|
|
isZero : Nat -> Bool
|
|
isZero Z = True
|
|
isZero (S n) = False
|
|
|
|
public export
|
|
isSucc : Nat -> Bool
|
|
isSucc Z = False
|
|
isSucc (S n) = True
|
|
|
|
public export
|
|
data IsSucc : (n : Nat) -> Type where
|
|
ItIsSucc : IsSucc (S n)
|
|
|
|
export
|
|
Uninhabited (IsSucc Z) where
|
|
uninhabited ItIsSucc impossible
|
|
|
|
public export
|
|
isItSucc : (n : Nat) -> Dec (IsSucc n)
|
|
isItSucc Z = No absurd
|
|
isItSucc (S n) = Yes ItIsSucc
|
|
|
|
public export
|
|
power : Nat -> Nat -> Nat
|
|
power base Z = S Z
|
|
power base (S exp) = base * (power base exp)
|
|
|
|
public export
|
|
hyper : Nat -> Nat -> Nat -> Nat
|
|
hyper Z a b = S b
|
|
hyper (S Z) a Z = a
|
|
hyper (S(S Z)) a Z = Z
|
|
hyper n a Z = S Z
|
|
hyper (S pn) a (S pb) = hyper pn a (hyper (S pn) a pb)
|
|
|
|
public export
|
|
pred : Nat -> Nat
|
|
pred Z = Z
|
|
pred (S n) = n
|
|
|
|
-- Comparisons
|
|
|
|
public export
|
|
data NotBothZero : (n, m : Nat) -> Type where
|
|
LeftIsNotZero : NotBothZero (S n) m
|
|
RightIsNotZero : NotBothZero n (S m)
|
|
|
|
export
|
|
Uninhabited (NotBothZero 0 0) where
|
|
uninhabited LeftIsNotZero impossible
|
|
uninhabited RightIsNotZero impossible
|
|
|
|
public export
|
|
data LTE : (n, m : Nat) -> Type where
|
|
LTEZero : LTE Z right
|
|
LTESucc : LTE left right -> LTE (S left) (S right)
|
|
|
|
export
|
|
Uninhabited (LTE (S n) Z) where
|
|
uninhabited LTEZero impossible
|
|
|
|
export
|
|
Uninhabited (LTE m n) => Uninhabited (LTE (S m) (S n)) where
|
|
uninhabited (LTESucc lte) = uninhabited lte
|
|
|
|
public export
|
|
GTE : Nat -> Nat -> Type
|
|
GTE left right = LTE right left
|
|
|
|
public export
|
|
LT : Nat -> Nat -> Type
|
|
LT left right = LTE (S left) right
|
|
|
|
namespace LT
|
|
|
|
||| LT is defined in terms of LTE which makes it annoying to use.
|
|
||| This convenient view of allows us to avoid having to constantly
|
|
||| perform nested matches to obtain another LT subproof instead of
|
|
||| an LTE one.
|
|
public export
|
|
data View : LT m n -> Type where
|
|
LTZero : View (LTESucc LTEZero)
|
|
LTSucc : (lt : m `LT` n) -> View (LTESucc lt)
|
|
|
|
||| Deconstruct an LT proof into either a base case or a further *LT*
|
|
export
|
|
view : (lt : LT m n) -> View lt
|
|
view (LTESucc LTEZero) = LTZero
|
|
view (LTESucc lt@(LTESucc _)) = LTSucc lt
|
|
|
|
||| A convenient alias for trivial LT proofs
|
|
export
|
|
ltZero : Z `LT` S m
|
|
ltZero = LTESucc LTEZero
|
|
|
|
public export
|
|
GT : Nat -> Nat -> Type
|
|
GT left right = LT right left
|
|
|
|
export
|
|
succNotLTEzero : Not (LTE (S m) Z)
|
|
succNotLTEzero LTEZero impossible
|
|
|
|
export
|
|
fromLteSucc : LTE (S m) (S n) -> LTE m n
|
|
fromLteSucc (LTESucc x) = x
|
|
|
|
public export
|
|
isLTE : (m, n : Nat) -> Dec (LTE m n)
|
|
isLTE Z n = Yes LTEZero
|
|
isLTE (S k) Z = No succNotLTEzero
|
|
isLTE (S k) (S j)
|
|
= case isLTE k j of
|
|
No contra => No (contra . fromLteSucc)
|
|
Yes prf => Yes (LTESucc prf)
|
|
|
|
public export
|
|
isGTE : (m, n : Nat) -> Dec (GTE m n)
|
|
isGTE m n = isLTE n m
|
|
|
|
public export
|
|
isLT : (m, n : Nat) -> Dec (LT m n)
|
|
isLT m n = isLTE (S m) n
|
|
|
|
public export
|
|
isGT : (m, n : Nat) -> Dec (GT m n)
|
|
isGT m n = isLT n m
|
|
|
|
export
|
|
lteRefl : {n : Nat} -> LTE n n
|
|
lteRefl {n = Z} = LTEZero
|
|
lteRefl {n = S k} = LTESucc lteRefl
|
|
|
|
export
|
|
lteSuccRight : LTE n m -> LTE n (S m)
|
|
lteSuccRight LTEZero = LTEZero
|
|
lteSuccRight (LTESucc x) = LTESucc (lteSuccRight x)
|
|
|
|
export
|
|
lteSuccLeft : LTE (S n) m -> LTE n m
|
|
lteSuccLeft (LTESucc x) = lteSuccRight x
|
|
|
|
export
|
|
lteTransitive : LTE n m -> LTE m p -> LTE n p
|
|
lteTransitive LTEZero y = LTEZero
|
|
lteTransitive (LTESucc x) (LTESucc y) = LTESucc (lteTransitive x y)
|
|
|
|
public export
|
|
lteAddRight : (n : Nat) -> LTE n (n + m)
|
|
lteAddRight Z = LTEZero
|
|
lteAddRight (S k) {m} = LTESucc (lteAddRight {m} k)
|
|
|
|
export
|
|
notLTEImpliesGT : {a, b : Nat} -> Not (a `LTE` b) -> a `GT` b
|
|
notLTEImpliesGT {a = 0 } not_z_lte_b = absurd $ not_z_lte_b LTEZero
|
|
notLTEImpliesGT {a = S a} {b = 0 } notLTE = LTESucc LTEZero
|
|
notLTEImpliesGT {a = S a} {b = S k} notLTE = LTESucc (notLTEImpliesGT (notLTE . LTESucc))
|
|
|
|
export
|
|
LTEImpliesNotGT : a `LTE` b -> Not (a `GT` b)
|
|
LTEImpliesNotGT LTEZero q = absurd q
|
|
LTEImpliesNotGT (LTESucc p) (LTESucc q) = LTEImpliesNotGT p q
|
|
|
|
export
|
|
notLTImpliesGTE : {a, b : _} -> Not (LT a b) -> GTE a b
|
|
notLTImpliesGTE notLT = fromLteSucc $ notLTEImpliesGT notLT
|
|
|
|
export
|
|
LTImpliesNotGTE : a `LT` b -> Not (a `GTE` b)
|
|
LTImpliesNotGTE p q = LTEImpliesNotGT q p
|
|
|
|
public export
|
|
lte : Nat -> Nat -> Bool
|
|
lte Z right = True
|
|
lte left Z = False
|
|
lte (S left) (S right) = lte left right
|
|
|
|
public export
|
|
gte : Nat -> Nat -> Bool
|
|
gte left right = lte right left
|
|
|
|
public export
|
|
lt : Nat -> Nat -> Bool
|
|
lt left right = lte (S left) right
|
|
|
|
public export
|
|
gt : Nat -> Nat -> Bool
|
|
gt left right = lt right left
|
|
|
|
export
|
|
lteReflectsLTE : (k : Nat) -> (n : Nat) -> lte k n === True -> k `LTE` n
|
|
lteReflectsLTE (S k) 0 _ impossible
|
|
lteReflectsLTE 0 0 _ = LTEZero
|
|
lteReflectsLTE 0 (S k) _ = LTEZero
|
|
lteReflectsLTE (S k) (S j) prf = LTESucc (lteReflectsLTE k j prf)
|
|
|
|
export
|
|
gteReflectsGTE : (k : Nat) -> (n : Nat) -> gte k n === True -> k `GTE` n
|
|
gteReflectsGTE k n prf = lteReflectsLTE n k prf
|
|
|
|
export
|
|
ltReflectsLT : (k : Nat) -> (n : Nat) -> lt k n === True -> k `LT` n
|
|
ltReflectsLT k n prf = lteReflectsLTE (S k) n prf
|
|
|
|
export
|
|
gtReflectsGT : (k : Nat) -> (n : Nat) -> gt k n === True -> k `GT` n
|
|
gtReflectsGT k n prf = ltReflectsLT n k prf
|
|
|
|
public export
|
|
minimum : Nat -> Nat -> Nat
|
|
minimum Z m = Z
|
|
minimum (S n) Z = Z
|
|
minimum (S n) (S m) = S (minimum n m)
|
|
|
|
public export
|
|
maximum : Nat -> Nat -> Nat
|
|
maximum Z m = m
|
|
maximum (S n) Z = S n
|
|
maximum (S n) (S m) = S (maximum n m)
|
|
|
|
-- Proofs on S
|
|
|
|
export
|
|
eqSucc : (0 left, right : Nat) -> left = right -> S left = S right
|
|
eqSucc _ _ Refl = Refl
|
|
|
|
export
|
|
succInjective : (0 left, right : Nat) -> S left = S right -> left = right
|
|
succInjective _ _ Refl = Refl
|
|
|
|
||| A definition of non-zero with a better behaviour than `Not (x = Z)`
|
|
||| This is amenable to proof search and `NonZero Z` is more readily
|
|
||| detected as impossible by Idris
|
|
public export
|
|
data NonZero : Nat -> Type where
|
|
SIsNonZero : NonZero (S x)
|
|
|
|
export Uninhabited (NonZero Z) where uninhabited SIsNonZero impossible
|
|
|
|
export
|
|
SIsNotZ : Not (S x = Z)
|
|
SIsNotZ = absurd
|
|
|
|
||| Auxiliary function:
|
|
||| mod' fuel a b = a `mod` (S b)
|
|
||| assuming we have enough fuel
|
|
public export
|
|
mod' : Nat -> Nat -> Nat -> Nat
|
|
mod' Z centre right = centre
|
|
mod' (S fuel) centre right =
|
|
if lte centre right then
|
|
centre
|
|
else
|
|
mod' fuel (minus centre (S right)) right
|
|
|
|
public export
|
|
modNatNZ : Nat -> (y: Nat) -> (0 _ : NonZero y) -> Nat
|
|
modNatNZ left Z p = void (absurd p)
|
|
modNatNZ left (S right) _ = mod' left left right
|
|
|
|
export partial
|
|
modNat : Nat -> Nat -> Nat
|
|
modNat left (S right) = modNatNZ left (S right) SIsNonZero
|
|
|
|
||| Auxiliary function:
|
|
||| div' fuel a b = a `div` (S b)
|
|
||| assuming we have enough fuel
|
|
public export
|
|
div' : Nat -> Nat -> Nat -> Nat
|
|
div' Z centre right = Z
|
|
div' (S fuel) centre right =
|
|
if lte centre right then
|
|
Z
|
|
else
|
|
S (div' fuel (minus centre (S right)) right)
|
|
|
|
-- 'public' to allow type-level division
|
|
public export
|
|
divNatNZ : Nat -> (y: Nat) -> (0 _ : NonZero y) -> Nat
|
|
divNatNZ left (S right) _ = div' left left right
|
|
|
|
export partial
|
|
divNat : Nat -> Nat -> Nat
|
|
divNat left (S right) = divNatNZ left (S right) SIsNonZero
|
|
|
|
export partial
|
|
divCeilNZ : Nat -> (y: Nat) -> (0 _ : NonZero y) -> Nat
|
|
divCeilNZ x y p = case (modNatNZ x y p) of
|
|
Z => divNatNZ x y p
|
|
S _ => S (divNatNZ x y p)
|
|
|
|
export partial
|
|
divCeil : Nat -> Nat -> Nat
|
|
divCeil x (S y) = divCeilNZ x (S y) SIsNonZero
|
|
|
|
|
|
public export
|
|
divmod' : Nat -> Nat -> Nat -> (Nat, Nat)
|
|
divmod' Z centre right = (Z, centre)
|
|
divmod' (S fuel) centre right =
|
|
if lte centre right then
|
|
(Z, centre)
|
|
else
|
|
let qr = divmod' fuel (minus centre (S right)) right
|
|
in (S (fst qr), snd qr)
|
|
|
|
public export
|
|
divmodNatNZ : Nat -> (y: Nat) -> (0 _ : NonZero y) -> (Nat, Nat)
|
|
divmodNatNZ left (S right) _ = divmod' left left right
|
|
|
|
|
|
public export
|
|
Integral Nat where
|
|
div = divNat
|
|
mod = modNat
|
|
|
|
export partial
|
|
gcd : (a: Nat) -> (b: Nat) -> {auto ok: NotBothZero a b} -> Nat
|
|
gcd a Z = a
|
|
gcd Z b = b
|
|
gcd a (S b) = gcd (S b) (modNatNZ a (S b) SIsNonZero)
|
|
|
|
export partial
|
|
lcm : Nat -> Nat -> Nat
|
|
lcm _ Z = Z
|
|
lcm Z _ = Z
|
|
lcm a (S b) = divNat (a * (S b)) (gcd a (S b))
|
|
|
|
--------------------------------------------------------------------------------
|
|
-- An informative comparison view
|
|
--------------------------------------------------------------------------------
|
|
public export
|
|
data CmpNat : Nat -> Nat -> Type where
|
|
CmpLT : (y : _) -> CmpNat x (x + S y)
|
|
CmpEQ : CmpNat x x
|
|
CmpGT : (x : _) -> CmpNat (y + S x) y
|
|
|
|
export
|
|
cmp : (x, y : Nat) -> CmpNat x y
|
|
cmp Z Z = CmpEQ
|
|
cmp Z (S k) = CmpLT _
|
|
cmp (S k) Z = CmpGT _
|
|
cmp (S x) (S y) with (cmp x y)
|
|
cmp (S x) (S (x + (S k))) | CmpLT k = CmpLT k
|
|
cmp (S x) (S x) | CmpEQ = CmpEQ
|
|
cmp (S (y + (S k))) (S y) | CmpGT k = CmpGT k
|
|
|
|
-- Proofs on +
|
|
|
|
export
|
|
plusZeroLeftNeutral : (right : Nat) -> 0 + right = right
|
|
plusZeroLeftNeutral _ = Refl
|
|
|
|
export
|
|
plusZeroRightNeutral : (left : Nat) -> left + 0 = left
|
|
plusZeroRightNeutral Z = Refl
|
|
plusZeroRightNeutral (S n) = rewrite plusZeroRightNeutral n in Refl
|
|
|
|
export
|
|
plusSuccRightSucc : (left, right : Nat) -> S (left + right) = left + (S right)
|
|
plusSuccRightSucc Z _ = Refl
|
|
plusSuccRightSucc (S left) right = rewrite plusSuccRightSucc left right in Refl
|
|
|
|
export
|
|
plusCommutative : (left, right : Nat) -> left + right = right + left
|
|
plusCommutative Z right = rewrite plusZeroRightNeutral right in Refl
|
|
plusCommutative (S left) right =
|
|
rewrite plusCommutative left right in
|
|
rewrite plusSuccRightSucc right left in
|
|
Refl
|
|
|
|
export
|
|
plusAssociative : (left, centre, right : Nat) ->
|
|
left + (centre + right) = (left + centre) + right
|
|
plusAssociative Z _ _ = Refl
|
|
plusAssociative (S left) centre right =
|
|
rewrite plusAssociative left centre right in Refl
|
|
|
|
export
|
|
plusConstantRight : (left, right, c : Nat) -> left = right ->
|
|
left + c = right + c
|
|
plusConstantRight _ _ _ Refl = Refl
|
|
|
|
export
|
|
plusConstantLeft : (left, right, c : Nat) -> left = right ->
|
|
c + left = c + right
|
|
plusConstantLeft _ _ _ Refl = Refl
|
|
|
|
export
|
|
plusOneSucc : (right : Nat) -> 1 + right = S right
|
|
plusOneSucc _ = Refl
|
|
|
|
export
|
|
plusLeftCancel : (left, right, right' : Nat) ->
|
|
left + right = left + right' -> right = right'
|
|
plusLeftCancel Z _ _ p = p
|
|
plusLeftCancel (S left) right right' p =
|
|
plusLeftCancel left right right' (succInjective _ _ p)
|
|
|
|
export
|
|
plusRightCancel : (left, left', right : Nat) ->
|
|
left + right = left' + right -> left = left'
|
|
plusRightCancel left left' right p =
|
|
plusLeftCancel right left left' $
|
|
rewrite plusCommutative right left in
|
|
rewrite plusCommutative right left' in
|
|
p
|
|
|
|
export
|
|
plusLeftLeftRightZero : (left, right : Nat) ->
|
|
left + right = left -> right = Z
|
|
plusLeftLeftRightZero left right p =
|
|
plusLeftCancel left right Z $
|
|
rewrite plusZeroRightNeutral left in
|
|
p
|
|
|
|
export
|
|
plusLteMonotoneRight : (p, q, r : Nat) -> q `LTE` r -> (q+p) `LTE` (r+p)
|
|
plusLteMonotoneRight p Z r LTEZero = rewrite plusCommutative r p in
|
|
lteAddRight p
|
|
plusLteMonotoneRight p (S q) (S r) (LTESucc l) = LTESucc $ plusLteMonotoneRight p q r l
|
|
|
|
export
|
|
plusLteMonotoneLeft : (p, q, r : Nat) -> q `LTE` r -> (p + q) `LTE` (p + r)
|
|
plusLteMonotoneLeft p q r p_lt_q
|
|
= rewrite plusCommutative p q in
|
|
rewrite plusCommutative p r in
|
|
plusLteMonotoneRight p q r p_lt_q
|
|
|
|
export
|
|
plusLteMonotone : {m, n, p, q : Nat} -> m `LTE` n -> p `LTE` q ->
|
|
(m + p) `LTE` (n + q)
|
|
plusLteMonotone left right
|
|
= lteTransitive
|
|
(plusLteMonotoneLeft m p q right)
|
|
(plusLteMonotoneRight q m n left)
|
|
|
|
zeroPlusLeftZero : (a,b : Nat) -> (0 = a + b) -> a = 0
|
|
zeroPlusLeftZero 0 0 Refl = Refl
|
|
zeroPlusLeftZero (S k) b _ impossible
|
|
|
|
zeroPlusRightZero : (a,b : Nat) -> (0 = a + b) -> b = 0
|
|
zeroPlusRightZero 0 0 Refl = Refl
|
|
zeroPlusRightZero (S k) b _ impossible
|
|
|
|
-- Proofs on *
|
|
|
|
export
|
|
multZeroLeftZero : (right : Nat) -> Z * right = Z
|
|
multZeroLeftZero _ = Refl
|
|
|
|
export
|
|
multZeroRightZero : (left : Nat) -> left * Z = Z
|
|
multZeroRightZero Z = Refl
|
|
multZeroRightZero (S left) = multZeroRightZero left
|
|
|
|
export
|
|
multRightSuccPlus : (left, right : Nat) ->
|
|
left * (S right) = left + (left * right)
|
|
multRightSuccPlus Z _ = Refl
|
|
multRightSuccPlus (S left) right =
|
|
rewrite multRightSuccPlus left right in
|
|
rewrite plusAssociative left right (left * right) in
|
|
rewrite plusAssociative right left (left * right) in
|
|
rewrite plusCommutative right left in
|
|
Refl
|
|
|
|
export
|
|
multLeftSuccPlus : (left, right : Nat) ->
|
|
(S left) * right = right + (left * right)
|
|
multLeftSuccPlus _ _ = Refl
|
|
|
|
export
|
|
multCommutative : (left, right : Nat) -> left * right = right * left
|
|
multCommutative Z right = rewrite multZeroRightZero right in Refl
|
|
multCommutative (S left) right =
|
|
rewrite multCommutative left right in
|
|
rewrite multRightSuccPlus right left in
|
|
Refl
|
|
|
|
export
|
|
multDistributesOverPlusLeft : (left, centre, right : Nat) ->
|
|
(left + centre) * right = (left * right) + (centre * right)
|
|
multDistributesOverPlusLeft Z _ _ = Refl
|
|
multDistributesOverPlusLeft (S k) centre right =
|
|
rewrite multDistributesOverPlusLeft k centre right in
|
|
rewrite plusAssociative right (k * right) (centre * right) in
|
|
Refl
|
|
|
|
export
|
|
multDistributesOverPlusRight : (left, centre, right : Nat) ->
|
|
left * (centre + right) = (left * centre) + (left * right)
|
|
multDistributesOverPlusRight left centre right =
|
|
rewrite multCommutative left (centre + right) in
|
|
rewrite multCommutative left centre in
|
|
rewrite multCommutative left right in
|
|
multDistributesOverPlusLeft centre right left
|
|
|
|
export
|
|
multAssociative : (left, centre, right : Nat) ->
|
|
left * (centre * right) = (left * centre) * right
|
|
multAssociative Z _ _ = Refl
|
|
multAssociative (S left) centre right =
|
|
rewrite multAssociative left centre right in
|
|
rewrite multDistributesOverPlusLeft centre (mult left centre) right in
|
|
Refl
|
|
|
|
export
|
|
multOneLeftNeutral : (right : Nat) -> 1 * right = right
|
|
multOneLeftNeutral right = plusZeroRightNeutral right
|
|
|
|
export
|
|
multOneRightNeutral : (left : Nat) -> left * 1 = left
|
|
multOneRightNeutral left =
|
|
rewrite multCommutative left 1 in
|
|
multOneLeftNeutral left
|
|
|
|
-- Proofs on minus
|
|
|
|
export
|
|
minusSuccSucc : (left, right : Nat) ->
|
|
minus (S left) (S right) = minus left right
|
|
minusSuccSucc _ _ = Refl
|
|
|
|
export
|
|
minusZeroLeft : (right : Nat) -> minus 0 right = Z
|
|
minusZeroLeft _ = Refl
|
|
|
|
export
|
|
minusZeroRight : (left : Nat) -> minus left 0 = left
|
|
minusZeroRight Z = Refl
|
|
minusZeroRight (S _) = Refl
|
|
|
|
export
|
|
minusZeroN : (n : Nat) -> Z = minus n n
|
|
minusZeroN Z = Refl
|
|
minusZeroN (S n) = minusZeroN n
|
|
|
|
export
|
|
minusOneSuccN : (n : Nat) -> S Z = minus (S n) n
|
|
minusOneSuccN Z = Refl
|
|
minusOneSuccN (S n) = minusOneSuccN n
|
|
|
|
export
|
|
minusSuccOne : (n : Nat) -> minus (S n) 1 = n
|
|
minusSuccOne Z = Refl
|
|
minusSuccOne (S _) = Refl
|
|
|
|
export
|
|
minusPlusZero : (n, m : Nat) -> minus n (n + m) = Z
|
|
minusPlusZero Z _ = Refl
|
|
minusPlusZero (S n) m = minusPlusZero n m
|
|
|
|
export
|
|
minusPos : m `LT` n -> Z `LT` minus n m
|
|
minusPos lt = case view lt of
|
|
LTZero => ltZero
|
|
LTSucc lt => minusPos lt
|
|
|
|
export
|
|
minusLteMonotone : {p : Nat} -> m `LTE` n -> minus m p `LTE` minus n p
|
|
minusLteMonotone LTEZero = LTEZero
|
|
minusLteMonotone {p = Z} prf@(LTESucc _) = prf
|
|
minusLteMonotone {p = S p} (LTESucc lte) = minusLteMonotone lte
|
|
|
|
export
|
|
minusLtMonotone : m `LT` n -> p `LT` n -> minus m p `LT` minus n p
|
|
minusLtMonotone mltn pltn = case view pltn of
|
|
LTZero => rewrite minusZeroRight m in mltn
|
|
LTSucc pltn => case view mltn of
|
|
LTZero => minusPos pltn
|
|
LTSucc mltn => minusLtMonotone mltn pltn
|
|
|
|
public export
|
|
minusPlus : (m : Nat) -> minus (plus m n) m === n
|
|
minusPlus Z = irrelevantEq (minusZeroRight n)
|
|
minusPlus (S m) = minusPlus m
|
|
|
|
export
|
|
plusMinusLte : (n, m : Nat) -> LTE n m -> (minus m n) + n = m
|
|
plusMinusLte Z m _ = rewrite minusZeroRight m in
|
|
plusZeroRightNeutral m
|
|
plusMinusLte (S _) Z lte = absurd lte
|
|
plusMinusLte (S n) (S m) lte = rewrite sym $ plusSuccRightSucc (minus m n) n in
|
|
cong S $ plusMinusLte n m (fromLteSucc lte)
|
|
|
|
export
|
|
minusMinusMinusPlus : (left, centre, right : Nat) ->
|
|
minus (minus left centre) right = minus left (centre + right)
|
|
minusMinusMinusPlus Z Z _ = Refl
|
|
minusMinusMinusPlus (S _) Z _ = Refl
|
|
minusMinusMinusPlus Z (S _) _ = Refl
|
|
minusMinusMinusPlus (S left) (S centre) right =
|
|
rewrite minusMinusMinusPlus left centre right in Refl
|
|
|
|
export
|
|
plusMinusLeftCancel : (left, right : Nat) -> (right' : Nat) ->
|
|
minus (left + right) (left + right') = minus right right'
|
|
plusMinusLeftCancel Z _ _ = Refl
|
|
plusMinusLeftCancel (S left) right right' =
|
|
rewrite plusMinusLeftCancel left right right' in Refl
|
|
|
|
export
|
|
multDistributesOverMinusLeft : (left, centre, right : Nat) ->
|
|
(minus left centre) * right = minus (left * right) (centre * right)
|
|
multDistributesOverMinusLeft Z Z _ = Refl
|
|
multDistributesOverMinusLeft (S left) Z right =
|
|
rewrite minusZeroRight (right + (left * right)) in Refl
|
|
multDistributesOverMinusLeft Z (S _) _ = Refl
|
|
multDistributesOverMinusLeft (S left) (S centre) right =
|
|
rewrite multDistributesOverMinusLeft left centre right in
|
|
rewrite plusMinusLeftCancel right (left * right) (centre * right) in
|
|
Refl
|
|
|
|
export
|
|
multDistributesOverMinusRight : (left, centre, right : Nat) ->
|
|
left * (minus centre right) = minus (left * centre) (left * right)
|
|
multDistributesOverMinusRight left centre right =
|
|
rewrite multCommutative left (minus centre right) in
|
|
rewrite multDistributesOverMinusLeft centre right left in
|
|
rewrite multCommutative centre left in
|
|
rewrite multCommutative right left in
|
|
Refl
|
|
|
|
export
|
|
zeroMultEitherZero : (a,b : Nat) -> a*b = 0 -> Either (a = 0) (b = 0)
|
|
zeroMultEitherZero 0 b prf = Left Refl
|
|
zeroMultEitherZero (S a) b prf = Right $ zeroPlusLeftZero b (a * b) (sym prf)
|
|
|
|
-- power proofs
|
|
|
|
-- multPowerPowerPlus : (base, exp, exp' : Nat) ->
|
|
-- power base (exp + exp') = (power base exp) * (power base exp')
|
|
-- multPowerPowerPlus base Z exp' =
|
|
-- rewrite sym $ plusZeroRightNeutral (power base exp') in Refl
|
|
-- multPowerPowerPlus base (S exp) exp' =
|
|
-- rewrite multPowerPowerPlus base exp exp' in
|
|
-- rewrite sym $ multAssociative base (power base exp) (power base exp') in
|
|
-- Refl
|
|
|
|
--powerOneNeutral : (base : Nat) -> power base 1 = base
|
|
--powerOneNeutral base = rewrite multCommutative base 1 in multOneLeftNeutral base
|
|
--
|
|
--powerOneSuccOne : (exp : Nat) -> power 1 exp = 1
|
|
--powerOneSuccOne Z = Refl
|
|
--powerOneSuccOne (S exp) = rewrite powerOneSuccOne exp in Refl
|
|
--
|
|
--powerPowerMultPower : (base, exp, exp' : Nat) ->
|
|
-- power (power base exp) exp' = power base (exp * exp')
|
|
--powerPowerMultPower _ exp Z = rewrite multZeroRightZero exp in Refl
|
|
--powerPowerMultPower base exp (S exp') =
|
|
-- rewrite powerPowerMultPower base exp exp' in
|
|
-- rewrite multRightSuccPlus exp exp' in
|
|
-- rewrite sym $ multPowerPowerPlus base exp (exp * exp') in
|
|
-- Refl
|
|
|
|
-- minimum / maximum proofs
|
|
|
|
export
|
|
maximumAssociative : (l, c, r : Nat) ->
|
|
maximum l (maximum c r) = maximum (maximum l c) r
|
|
maximumAssociative Z _ _ = Refl
|
|
maximumAssociative (S _) Z _ = Refl
|
|
maximumAssociative (S _) (S _) Z = Refl
|
|
maximumAssociative (S k) (S j) (S i) = rewrite maximumAssociative k j i in Refl
|
|
|
|
export
|
|
maximumCommutative : (l, r : Nat) -> maximum l r = maximum r l
|
|
maximumCommutative Z Z = Refl
|
|
maximumCommutative Z (S _) = Refl
|
|
maximumCommutative (S _) Z = Refl
|
|
maximumCommutative (S k) (S j) = rewrite maximumCommutative k j in Refl
|
|
|
|
export
|
|
maximumIdempotent : (n : Nat) -> maximum n n = n
|
|
maximumIdempotent Z = Refl
|
|
maximumIdempotent (S k) = cong S $ maximumIdempotent k
|
|
|
|
export
|
|
minimumAssociative : (l, c, r : Nat) ->
|
|
minimum l (minimum c r) = minimum (minimum l c) r
|
|
minimumAssociative Z _ _ = Refl
|
|
minimumAssociative (S _) Z _ = Refl
|
|
minimumAssociative (S _) (S _) Z = Refl
|
|
minimumAssociative (S k) (S j) (S i) = rewrite minimumAssociative k j i in Refl
|
|
|
|
export
|
|
minimumCommutative : (l, r : Nat) -> minimum l r = minimum r l
|
|
minimumCommutative Z Z = Refl
|
|
minimumCommutative Z (S _) = Refl
|
|
minimumCommutative (S _) Z = Refl
|
|
minimumCommutative (S k) (S j) = rewrite minimumCommutative k j in Refl
|
|
|
|
export
|
|
minimumIdempotent : (n : Nat) -> minimum n n = n
|
|
minimumIdempotent Z = Refl
|
|
minimumIdempotent (S k) = cong S $ minimumIdempotent k
|
|
|
|
export
|
|
minimumZeroZeroLeft : (left : Nat) -> minimum left 0 = Z
|
|
minimumZeroZeroLeft left = rewrite minimumCommutative left 0 in Refl
|
|
|
|
export
|
|
minimumSuccSucc : (left, right : Nat) ->
|
|
minimum (S left) (S right) = S (minimum left right)
|
|
minimumSuccSucc _ _ = Refl
|
|
|
|
export
|
|
maximumZeroNLeft : (left : Nat) -> maximum left Z = left
|
|
maximumZeroNLeft left = rewrite maximumCommutative left Z in Refl
|
|
|
|
export
|
|
maximumSuccSucc : (left, right : Nat) ->
|
|
S (maximum left right) = maximum (S left) (S right)
|
|
maximumSuccSucc _ _ = Refl
|
|
|
|
export
|
|
sucMaxL : (l : Nat) -> maximum (S l) l = (S l)
|
|
sucMaxL Z = Refl
|
|
sucMaxL (S l) = cong S $ sucMaxL l
|
|
|
|
export
|
|
sucMaxR : (l : Nat) -> maximum l (S l) = (S l)
|
|
sucMaxR Z = Refl
|
|
sucMaxR (S l) = cong S $ sucMaxR l
|
|
|
|
export
|
|
sucMinL : (l : Nat) -> minimum (S l) l = l
|
|
sucMinL Z = Refl
|
|
sucMinL (S l) = cong S $ sucMinL l
|
|
|
|
export
|
|
sucMinR : (l : Nat) -> minimum l (S l) = l
|
|
sucMinR Z = Refl
|
|
sucMinR (S l) = cong S $ sucMinR l
|
|
|
|
-- Algebra -----------------------------
|
|
|
|
namespace Semigroup
|
|
|
|
public export
|
|
[Maximum] Semigroup Nat where
|
|
(<+>) = max
|
|
|
|
public export
|
|
[Minimum] Semigroup Nat where
|
|
(<+>) = min
|
|
|
|
namespace Monoid
|
|
|
|
public export
|
|
[Maximum] Monoid Nat using Semigroup.Maximum where
|
|
neutral = 0
|