Idris2/libs/base/Data/Nat.idr
André Videla 10b9685e4b
Injective interface and its implementations (#2114)
Co-authored-by: Nick Drozd <nicholasdrozd@gmail.com>
2021-11-26 10:55:17 +00:00

805 lines
22 KiB
Idris

module Data.Nat
import public Control.Relation
import public Control.Order
import public Control.Function
%default total
export
Uninhabited (Z = S n) where
uninhabited Refl impossible
export
Uninhabited (S n = Z) where
uninhabited Refl impossible
export
Uninhabited (a = b) => Uninhabited (S a = S b) where
uninhabited Refl @{ab} = uninhabited @{ab} Refl
public export
isZero : Nat -> Bool
isZero Z = True
isZero (S n) = False
public export
isSucc : Nat -> Bool
isSucc Z = False
isSucc (S n) = True
public export
data IsSucc : (n : Nat) -> Type where
ItIsSucc : IsSucc (S n)
export
Uninhabited (IsSucc Z) where
uninhabited ItIsSucc impossible
public export
isItSucc : (n : Nat) -> Dec (IsSucc n)
isItSucc Z = No absurd
isItSucc (S n) = Yes ItIsSucc
public export
power : Nat -> Nat -> Nat
power base Z = S Z
power base (S exp) = base * (power base exp)
public export
hyper : Nat -> Nat -> Nat -> Nat
hyper Z a b = S b
hyper (S Z) a Z = a
hyper (S(S Z)) a Z = Z
hyper n a Z = S Z
hyper (S pn) a (S pb) = hyper pn a (hyper (S pn) a pb)
public export
pred : Nat -> Nat
pred Z = Z
pred (S n) = n
-- Comparisons
public export
data NotBothZero : (n, m : Nat) -> Type where
LeftIsNotZero : NotBothZero (S n) m
RightIsNotZero : NotBothZero n (S m)
export
Uninhabited (NotBothZero 0 0) where
uninhabited LeftIsNotZero impossible
uninhabited RightIsNotZero impossible
public export
data LTE : (n, m : Nat) -> Type where
LTEZero : LTE Z right
LTESucc : LTE left right -> LTE (S left) (S right)
export
Uninhabited (LTE (S n) Z) where
uninhabited LTEZero impossible
export
Uninhabited (LTE m n) => Uninhabited (LTE (S m) (S n)) where
uninhabited (LTESucc lte) = uninhabited lte
public export
Reflexive Nat LTE where
reflexive {x = Z} = LTEZero
reflexive {x = S _} = LTESucc $ reflexive
public export
Transitive Nat LTE where
transitive LTEZero _ = LTEZero
transitive (LTESucc xy) (LTESucc yz) =
LTESucc $ transitive xy yz
public export
Antisymmetric Nat LTE where
antisymmetric LTEZero LTEZero = Refl
antisymmetric (LTESucc xy) (LTESucc yx) =
cong S $ antisymmetric xy yx
public export
Connex Nat LTE where
connex {x = Z} _ = Left LTEZero
connex {y = Z} _ = Right LTEZero
connex {x = S _} {y = S _} prf =
case connex $ prf . (cong S) of
Left jk => Left $ LTESucc jk
Right kj => Right $ LTESucc kj
public export
Preorder Nat LTE where
public export
PartialOrder Nat LTE where
public export
LinearOrder Nat LTE where
public export
GTE : Nat -> Nat -> Type
GTE left right = LTE right left
public export
LT : Nat -> Nat -> Type
LT left right = LTE (S left) right
namespace LT
||| LT is defined in terms of LTE which makes it annoying to use.
||| This convenient view of allows us to avoid having to constantly
||| perform nested matches to obtain another LT subproof instead of
||| an LTE one.
public export
data View : LT m n -> Type where
LTZero : View (LTESucc LTEZero)
LTSucc : (lt : m `LT` n) -> View (LTESucc lt)
||| Deconstruct an LT proof into either a base case or a further *LT*
export
view : (lt : LT m n) -> View lt
view (LTESucc LTEZero) = LTZero
view (LTESucc lt@(LTESucc _)) = LTSucc lt
||| A convenient alias for trivial LT proofs
export
ltZero : Z `LT` S m
ltZero = LTESucc LTEZero
public export
GT : Nat -> Nat -> Type
GT left right = LT right left
export
succNotLTEzero : Not (LTE (S m) Z)
succNotLTEzero LTEZero impossible
export
fromLteSucc : LTE (S m) (S n) -> LTE m n
fromLteSucc (LTESucc x) = x
export
succNotLTEpred : {x : Nat} -> Not $ LTE (S x) x
succNotLTEpred {x = 0} prf = succNotLTEzero prf
succNotLTEpred {x = S _} prf = succNotLTEpred $ fromLteSucc prf
public export
isLTE : (m, n : Nat) -> Dec (LTE m n)
isLTE Z n = Yes LTEZero
isLTE (S k) Z = No succNotLTEzero
isLTE (S k) (S j)
= case isLTE k j of
No contra => No (contra . fromLteSucc)
Yes prf => Yes (LTESucc prf)
public export
isGTE : (m, n : Nat) -> Dec (GTE m n)
isGTE m n = isLTE n m
public export
isLT : (m, n : Nat) -> Dec (LT m n)
isLT m n = isLTE (S m) n
public export
isGT : (m, n : Nat) -> Dec (GT m n)
isGT m n = isLT n m
export
lteSuccRight : LTE n m -> LTE n (S m)
lteSuccRight LTEZero = LTEZero
lteSuccRight (LTESucc x) = LTESucc (lteSuccRight x)
export
lteSuccLeft : LTE (S n) m -> LTE n m
lteSuccLeft (LTESucc x) = lteSuccRight x
export
lteAddRight : (n : Nat) -> LTE n (n + m)
lteAddRight Z = LTEZero
lteAddRight (S k) {m} = LTESucc (lteAddRight {m} k)
export
notLTEImpliesGT : {a, b : Nat} -> Not (a `LTE` b) -> a `GT` b
notLTEImpliesGT {a = 0 } not_z_lte_b = absurd $ not_z_lte_b LTEZero
notLTEImpliesGT {a = S a} {b = 0 } notLTE = LTESucc LTEZero
notLTEImpliesGT {a = S a} {b = S k} notLTE = LTESucc (notLTEImpliesGT (notLTE . LTESucc))
export
LTEImpliesNotGT : a `LTE` b -> Not (a `GT` b)
LTEImpliesNotGT LTEZero q = absurd q
LTEImpliesNotGT (LTESucc p) (LTESucc q) = LTEImpliesNotGT p q
export
notLTImpliesGTE : {a, b : _} -> Not (LT a b) -> GTE a b
notLTImpliesGTE notLT = fromLteSucc $ notLTEImpliesGT notLT
export
LTImpliesNotGTE : a `LT` b -> Not (a `GTE` b)
LTImpliesNotGTE p q = LTEImpliesNotGT q p
public export
lte : Nat -> Nat -> Bool
lte Z right = True
lte left Z = False
lte (S left) (S right) = lte left right
public export
gte : Nat -> Nat -> Bool
gte left right = lte right left
public export
lt : Nat -> Nat -> Bool
lt left right = lte (S left) right
public export
gt : Nat -> Nat -> Bool
gt left right = lt right left
export
lteReflectsLTE : (k : Nat) -> (n : Nat) -> lte k n === True -> k `LTE` n
lteReflectsLTE (S k) 0 _ impossible
lteReflectsLTE 0 0 _ = LTEZero
lteReflectsLTE 0 (S k) _ = LTEZero
lteReflectsLTE (S k) (S j) prf = LTESucc (lteReflectsLTE k j prf)
export
gteReflectsGTE : (k : Nat) -> (n : Nat) -> gte k n === True -> k `GTE` n
gteReflectsGTE k n prf = lteReflectsLTE n k prf
export
ltReflectsLT : (k : Nat) -> (n : Nat) -> lt k n === True -> k `LT` n
ltReflectsLT k n prf = lteReflectsLTE (S k) n prf
export
gtReflectsGT : (k : Nat) -> (n : Nat) -> gt k n === True -> k `GT` n
gtReflectsGT k n prf = ltReflectsLT n k prf
public export
minimum : Nat -> Nat -> Nat
minimum Z m = Z
minimum (S n) Z = Z
minimum (S n) (S m) = S (minimum n m)
public export
maximum : Nat -> Nat -> Nat
maximum Z m = m
maximum (S n) Z = S n
maximum (S n) (S m) = S (maximum n m)
-- Proofs on S
export
eqSucc : (0 left, right : Nat) -> left = right -> S left = S right
eqSucc _ _ Refl = Refl
export
Injective S where
injective Refl = Refl
||| A definition of non-zero with a better behaviour than `Not (x = Z)`
||| This is amenable to proof search and `NonZero Z` is more readily
||| detected as impossible by Idris
public export
data NonZero : Nat -> Type where
SIsNonZero : NonZero (S x)
export Uninhabited (NonZero Z) where uninhabited SIsNonZero impossible
export
SIsNotZ : Not (S x = Z)
SIsNotZ = absurd
||| Auxiliary function:
||| mod' fuel a b = a `mod` (S b)
||| assuming we have enough fuel
public export
mod' : Nat -> Nat -> Nat -> Nat
mod' Z centre right = centre
mod' (S fuel) centre right =
if lte centre right then
centre
else
mod' fuel (minus centre (S right)) right
public export
modNatNZ : Nat -> (y: Nat) -> (0 _ : NonZero y) -> Nat
modNatNZ left Z p = void (absurd p)
modNatNZ left (S right) _ = mod' left left right
export partial
modNat : Nat -> Nat -> Nat
modNat left (S right) = modNatNZ left (S right) SIsNonZero
||| Auxiliary function:
||| div' fuel a b = a `div` (S b)
||| assuming we have enough fuel
public export
div' : Nat -> Nat -> Nat -> Nat
div' Z centre right = Z
div' (S fuel) centre right =
if lte centre right then
Z
else
S (div' fuel (minus centre (S right)) right)
-- 'public' to allow type-level division
public export
divNatNZ : Nat -> (y: Nat) -> (0 _ : NonZero y) -> Nat
divNatNZ left (S right) _ = div' left left right
export partial
divNat : Nat -> Nat -> Nat
divNat left (S right) = divNatNZ left (S right) SIsNonZero
export partial
divCeilNZ : Nat -> (y: Nat) -> (0 _ : NonZero y) -> Nat
divCeilNZ x y p = case (modNatNZ x y p) of
Z => divNatNZ x y p
S _ => S (divNatNZ x y p)
export partial
divCeil : Nat -> Nat -> Nat
divCeil x (S y) = divCeilNZ x (S y) SIsNonZero
public export
divmod' : Nat -> Nat -> Nat -> (Nat, Nat)
divmod' Z centre right = (Z, centre)
divmod' (S fuel) centre right =
if lte centre right then
(Z, centre)
else
let qr = divmod' fuel (minus centre (S right)) right
in (S (fst qr), snd qr)
public export
divmodNatNZ : Nat -> (y: Nat) -> (0 _ : NonZero y) -> (Nat, Nat)
divmodNatNZ left (S right) _ = divmod' left left right
public export
Integral Nat where
div = divNat
mod = modNat
export partial
gcd : (a: Nat) -> (b: Nat) -> {auto ok: NotBothZero a b} -> Nat
gcd a Z = a
gcd Z b = b
gcd a (S b) = gcd (S b) (modNatNZ a (S b) SIsNonZero)
export partial
lcm : Nat -> Nat -> Nat
lcm _ Z = Z
lcm Z _ = Z
lcm a (S b) = divNat (a * (S b)) (gcd a (S b))
--------------------------------------------------------------------------------
-- An informative comparison view
--------------------------------------------------------------------------------
public export
data CmpNat : Nat -> Nat -> Type where
CmpLT : (y : _) -> CmpNat x (x + S y)
CmpEQ : CmpNat x x
CmpGT : (x : _) -> CmpNat (y + S x) y
export
cmp : (x, y : Nat) -> CmpNat x y
cmp Z Z = CmpEQ
cmp Z (S k) = CmpLT _
cmp (S k) Z = CmpGT _
cmp (S x) (S y) with (cmp x y)
cmp (S x) (S (x + (S k))) | CmpLT k = CmpLT k
cmp (S x) (S x) | CmpEQ = CmpEQ
cmp (S (y + (S k))) (S y) | CmpGT k = CmpGT k
-- Proofs on +
export
plusZeroLeftNeutral : (right : Nat) -> 0 + right = right
plusZeroLeftNeutral _ = Refl
export
plusZeroRightNeutral : (left : Nat) -> left + 0 = left
plusZeroRightNeutral Z = Refl
plusZeroRightNeutral (S n) = rewrite plusZeroRightNeutral n in Refl
export
plusSuccRightSucc : (left, right : Nat) -> S (left + right) = left + (S right)
plusSuccRightSucc Z _ = Refl
plusSuccRightSucc (S left) right = rewrite plusSuccRightSucc left right in Refl
export
plusCommutative : (left, right : Nat) -> left + right = right + left
plusCommutative Z right = rewrite plusZeroRightNeutral right in Refl
plusCommutative (S left) right =
rewrite plusCommutative left right in
rewrite plusSuccRightSucc right left in
Refl
export
plusAssociative : (left, centre, right : Nat) ->
left + (centre + right) = (left + centre) + right
plusAssociative Z _ _ = Refl
plusAssociative (S left) centre right =
rewrite plusAssociative left centre right in Refl
export
plusConstantRight : (left, right, c : Nat) -> left = right ->
left + c = right + c
plusConstantRight _ _ _ Refl = Refl
export
plusConstantLeft : (left, right, c : Nat) -> left = right ->
c + left = c + right
plusConstantLeft _ _ _ Refl = Refl
export
plusOneSucc : (right : Nat) -> 1 + right = S right
plusOneSucc _ = Refl
export
plusLeftCancel : (left, right, right' : Nat) ->
left + right = left + right' -> right = right'
plusLeftCancel Z _ _ p = p
plusLeftCancel (S left) right right' p =
plusLeftCancel left right right' $ injective p
export
plusRightCancel : (left, left', right : Nat) ->
left + right = left' + right -> left = left'
plusRightCancel left left' right p =
plusLeftCancel right left left' $
rewrite plusCommutative right left in
rewrite plusCommutative right left' in
p
export
plusLeftLeftRightZero : (left, right : Nat) ->
left + right = left -> right = Z
plusLeftLeftRightZero left right p =
plusLeftCancel left right Z $
rewrite plusZeroRightNeutral left in
p
export
plusLteMonotoneRight : (p, q, r : Nat) -> q `LTE` r -> (q+p) `LTE` (r+p)
plusLteMonotoneRight p Z r LTEZero = rewrite plusCommutative r p in
lteAddRight p
plusLteMonotoneRight p (S q) (S r) (LTESucc l) = LTESucc $ plusLteMonotoneRight p q r l
export
plusLteMonotoneLeft : (p, q, r : Nat) -> q `LTE` r -> (p + q) `LTE` (p + r)
plusLteMonotoneLeft p q r p_lt_q
= rewrite plusCommutative p q in
rewrite plusCommutative p r in
plusLteMonotoneRight p q r p_lt_q
export
plusLteMonotone : {m, n, p, q : Nat} -> m `LTE` n -> p `LTE` q ->
(m + p) `LTE` (n + q)
plusLteMonotone left right =
transitive
(plusLteMonotoneLeft m p q right)
(plusLteMonotoneRight q m n left)
zeroPlusLeftZero : (a,b : Nat) -> (0 = a + b) -> a = 0
zeroPlusLeftZero 0 0 Refl = Refl
zeroPlusLeftZero (S k) b _ impossible
zeroPlusRightZero : (a,b : Nat) -> (0 = a + b) -> b = 0
zeroPlusRightZero 0 0 Refl = Refl
zeroPlusRightZero (S k) b _ impossible
-- Proofs on *
export
multZeroLeftZero : (right : Nat) -> Z * right = Z
multZeroLeftZero _ = Refl
export
multZeroRightZero : (left : Nat) -> left * Z = Z
multZeroRightZero Z = Refl
multZeroRightZero (S left) = multZeroRightZero left
export
multRightSuccPlus : (left, right : Nat) ->
left * (S right) = left + (left * right)
multRightSuccPlus Z _ = Refl
multRightSuccPlus (S left) right =
rewrite multRightSuccPlus left right in
rewrite plusAssociative left right (left * right) in
rewrite plusAssociative right left (left * right) in
rewrite plusCommutative right left in
Refl
export
multLeftSuccPlus : (left, right : Nat) ->
(S left) * right = right + (left * right)
multLeftSuccPlus _ _ = Refl
export
multCommutative : (left, right : Nat) -> left * right = right * left
multCommutative Z right = rewrite multZeroRightZero right in Refl
multCommutative (S left) right =
rewrite multCommutative left right in
rewrite multRightSuccPlus right left in
Refl
export
multDistributesOverPlusLeft : (left, centre, right : Nat) ->
(left + centre) * right = (left * right) + (centre * right)
multDistributesOverPlusLeft Z _ _ = Refl
multDistributesOverPlusLeft (S k) centre right =
rewrite multDistributesOverPlusLeft k centre right in
rewrite plusAssociative right (k * right) (centre * right) in
Refl
export
multDistributesOverPlusRight : (left, centre, right : Nat) ->
left * (centre + right) = (left * centre) + (left * right)
multDistributesOverPlusRight left centre right =
rewrite multCommutative left (centre + right) in
rewrite multCommutative left centre in
rewrite multCommutative left right in
multDistributesOverPlusLeft centre right left
export
multAssociative : (left, centre, right : Nat) ->
left * (centre * right) = (left * centre) * right
multAssociative Z _ _ = Refl
multAssociative (S left) centre right =
rewrite multAssociative left centre right in
rewrite multDistributesOverPlusLeft centre (mult left centre) right in
Refl
export
multOneLeftNeutral : (right : Nat) -> 1 * right = right
multOneLeftNeutral right = plusZeroRightNeutral right
export
multOneRightNeutral : (left : Nat) -> left * 1 = left
multOneRightNeutral left =
rewrite multCommutative left 1 in
multOneLeftNeutral left
-- Proofs on minus
export
minusSuccSucc : (left, right : Nat) ->
minus (S left) (S right) = minus left right
minusSuccSucc _ _ = Refl
export
minusZeroLeft : (right : Nat) -> minus 0 right = Z
minusZeroLeft _ = Refl
export
minusZeroRight : (left : Nat) -> minus left 0 = left
minusZeroRight Z = Refl
minusZeroRight (S _) = Refl
export
minusZeroN : (n : Nat) -> Z = minus n n
minusZeroN Z = Refl
minusZeroN (S n) = minusZeroN n
export
minusOneSuccN : (n : Nat) -> S Z = minus (S n) n
minusOneSuccN Z = Refl
minusOneSuccN (S n) = minusOneSuccN n
export
minusSuccOne : (n : Nat) -> minus (S n) 1 = n
minusSuccOne Z = Refl
minusSuccOne (S _) = Refl
export
minusPlusZero : (n, m : Nat) -> minus n (n + m) = Z
minusPlusZero Z _ = Refl
minusPlusZero (S n) m = minusPlusZero n m
export
minusPos : m `LT` n -> Z `LT` minus n m
minusPos lt = case view lt of
LTZero => ltZero
LTSucc lt => minusPos lt
export
minusLteMonotone : {p : Nat} -> m `LTE` n -> minus m p `LTE` minus n p
minusLteMonotone LTEZero = LTEZero
minusLteMonotone {p = Z} prf@(LTESucc _) = prf
minusLteMonotone {p = S p} (LTESucc lte) = minusLteMonotone lte
export
minusLtMonotone : m `LT` n -> p `LT` n -> minus m p `LT` minus n p
minusLtMonotone mltn pltn = case view pltn of
LTZero => rewrite minusZeroRight m in mltn
LTSucc pltn => case view mltn of
LTZero => minusPos pltn
LTSucc mltn => minusLtMonotone mltn pltn
public export
minusPlus : (m : Nat) -> minus (plus m n) m === n
minusPlus Z = irrelevantEq (minusZeroRight n)
minusPlus (S m) = minusPlus m
export
plusMinusLte : (n, m : Nat) -> LTE n m -> (minus m n) + n = m
plusMinusLte Z m _ = rewrite minusZeroRight m in
plusZeroRightNeutral m
plusMinusLte (S _) Z lte = absurd lte
plusMinusLte (S n) (S m) lte = rewrite sym $ plusSuccRightSucc (minus m n) n in
cong S $ plusMinusLte n m (fromLteSucc lte)
export
minusMinusMinusPlus : (left, centre, right : Nat) ->
minus (minus left centre) right = minus left (centre + right)
minusMinusMinusPlus Z Z _ = Refl
minusMinusMinusPlus (S _) Z _ = Refl
minusMinusMinusPlus Z (S _) _ = Refl
minusMinusMinusPlus (S left) (S centre) right =
rewrite minusMinusMinusPlus left centre right in Refl
export
plusMinusLeftCancel : (left, right : Nat) -> (right' : Nat) ->
minus (left + right) (left + right') = minus right right'
plusMinusLeftCancel Z _ _ = Refl
plusMinusLeftCancel (S left) right right' =
rewrite plusMinusLeftCancel left right right' in Refl
export
multDistributesOverMinusLeft : (left, centre, right : Nat) ->
(minus left centre) * right = minus (left * right) (centre * right)
multDistributesOverMinusLeft Z Z _ = Refl
multDistributesOverMinusLeft (S left) Z right =
rewrite minusZeroRight (right + (left * right)) in Refl
multDistributesOverMinusLeft Z (S _) _ = Refl
multDistributesOverMinusLeft (S left) (S centre) right =
rewrite multDistributesOverMinusLeft left centre right in
rewrite plusMinusLeftCancel right (left * right) (centre * right) in
Refl
export
multDistributesOverMinusRight : (left, centre, right : Nat) ->
left * (minus centre right) = minus (left * centre) (left * right)
multDistributesOverMinusRight left centre right =
rewrite multCommutative left (minus centre right) in
rewrite multDistributesOverMinusLeft centre right left in
rewrite multCommutative centre left in
rewrite multCommutative right left in
Refl
export
zeroMultEitherZero : (a,b : Nat) -> a*b = 0 -> Either (a = 0) (b = 0)
zeroMultEitherZero 0 b prf = Left Refl
zeroMultEitherZero (S a) b prf = Right $ zeroPlusLeftZero b (a * b) (sym prf)
-- power proofs
-- multPowerPowerPlus : (base, exp, exp' : Nat) ->
-- power base (exp + exp') = (power base exp) * (power base exp')
-- multPowerPowerPlus base Z exp' =
-- rewrite sym $ plusZeroRightNeutral (power base exp') in Refl
-- multPowerPowerPlus base (S exp) exp' =
-- rewrite multPowerPowerPlus base exp exp' in
-- rewrite sym $ multAssociative base (power base exp) (power base exp') in
-- Refl
--powerOneNeutral : (base : Nat) -> power base 1 = base
--powerOneNeutral base = rewrite multCommutative base 1 in multOneLeftNeutral base
--
--powerOneSuccOne : (exp : Nat) -> power 1 exp = 1
--powerOneSuccOne Z = Refl
--powerOneSuccOne (S exp) = rewrite powerOneSuccOne exp in Refl
--
--powerPowerMultPower : (base, exp, exp' : Nat) ->
-- power (power base exp) exp' = power base (exp * exp')
--powerPowerMultPower _ exp Z = rewrite multZeroRightZero exp in Refl
--powerPowerMultPower base exp (S exp') =
-- rewrite powerPowerMultPower base exp exp' in
-- rewrite multRightSuccPlus exp exp' in
-- rewrite sym $ multPowerPowerPlus base exp (exp * exp') in
-- Refl
-- minimum / maximum proofs
export
maximumAssociative : (l, c, r : Nat) ->
maximum l (maximum c r) = maximum (maximum l c) r
maximumAssociative Z _ _ = Refl
maximumAssociative (S _) Z _ = Refl
maximumAssociative (S _) (S _) Z = Refl
maximumAssociative (S k) (S j) (S i) = rewrite maximumAssociative k j i in Refl
export
maximumCommutative : (l, r : Nat) -> maximum l r = maximum r l
maximumCommutative Z Z = Refl
maximumCommutative Z (S _) = Refl
maximumCommutative (S _) Z = Refl
maximumCommutative (S k) (S j) = rewrite maximumCommutative k j in Refl
export
maximumIdempotent : (n : Nat) -> maximum n n = n
maximumIdempotent Z = Refl
maximumIdempotent (S k) = cong S $ maximumIdempotent k
export
minimumAssociative : (l, c, r : Nat) ->
minimum l (minimum c r) = minimum (minimum l c) r
minimumAssociative Z _ _ = Refl
minimumAssociative (S _) Z _ = Refl
minimumAssociative (S _) (S _) Z = Refl
minimumAssociative (S k) (S j) (S i) = rewrite minimumAssociative k j i in Refl
export
minimumCommutative : (l, r : Nat) -> minimum l r = minimum r l
minimumCommutative Z Z = Refl
minimumCommutative Z (S _) = Refl
minimumCommutative (S _) Z = Refl
minimumCommutative (S k) (S j) = rewrite minimumCommutative k j in Refl
export
minimumIdempotent : (n : Nat) -> minimum n n = n
minimumIdempotent Z = Refl
minimumIdempotent (S k) = cong S $ minimumIdempotent k
export
minimumZeroZeroLeft : (left : Nat) -> minimum left 0 = Z
minimumZeroZeroLeft left = rewrite minimumCommutative left 0 in Refl
export
minimumSuccSucc : (left, right : Nat) ->
minimum (S left) (S right) = S (minimum left right)
minimumSuccSucc _ _ = Refl
export
maximumZeroNLeft : (left : Nat) -> maximum left Z = left
maximumZeroNLeft left = rewrite maximumCommutative left Z in Refl
export
maximumSuccSucc : (left, right : Nat) ->
S (maximum left right) = maximum (S left) (S right)
maximumSuccSucc _ _ = Refl
export
sucMaxL : (l : Nat) -> maximum (S l) l = (S l)
sucMaxL Z = Refl
sucMaxL (S l) = cong S $ sucMaxL l
export
sucMaxR : (l : Nat) -> maximum l (S l) = (S l)
sucMaxR Z = Refl
sucMaxR (S l) = cong S $ sucMaxR l
export
sucMinL : (l : Nat) -> minimum (S l) l = l
sucMinL Z = Refl
sucMinL (S l) = cong S $ sucMinL l
export
sucMinR : (l : Nat) -> minimum l (S l) = l
sucMinR Z = Refl
sucMinR (S l) = cong S $ sucMinR l
-- Algebra -----------------------------
namespace Semigroup
public export
[Maximum] Semigroup Nat where
(<+>) = max
public export
[Minimum] Semigroup Nat where
(<+>) = min
namespace Monoid
public export
[Maximum] Monoid Nat using Semigroup.Maximum where
neutral = 0