Idris2/support/racket/support.rkt
Sam Phillips 795eeb23c5 Make Racket backend channels behave same as Chez.
Add tests for both that demonstrate equivalent behavior.
2022-10-04 10:24:27 +02:00

578 lines
17 KiB
Racket

(define (blodwen-os)
(case (system-type 'os)
[(unix) "unix"]
[(macosx) "darwin"]
[(windows) "windows"]
[else "unknown"]))
(define blodwen-lazy
(lambda (f)
(let ([evaluated #f] [res void])
(lambda ()
(if (not evaluated)
(begin (set! evaluated #t)
(set! res (f))
(set! f void))
(void))
res))))
(define (blodwen-toSignedInt x bits)
(if (bitwise-bit-set? x bits)
(bitwise-ior x (arithmetic-shift (- 1) bits))
(bitwise-and x (sub1 (arithmetic-shift 1 bits)))))
(define (blodwen-toUnsignedInt x bits)
(bitwise-and x (sub1 (arithmetic-shift 1 bits))))
(define (blodwen-euclidDiv a b)
(let ((q (quotient a b))
(r (remainder a b)))
(if (< r 0)
(if (> b 0) (- q 1) (+ q 1))
q)))
(define (blodwen-euclidMod a b)
(let ((r (remainder a b)))
(if (< r 0)
(if (> b 0) (+ r b) (- r b))
r)))
(define bu+ (lambda (x y bits) (blodwen-toUnsignedInt (+ x y) bits)))
(define bu- (lambda (x y bits) (blodwen-toUnsignedInt (- x y) bits)))
(define bu* (lambda (x y bits) (blodwen-toUnsignedInt (* x y) bits)))
(define bu/ (lambda (x y bits) (blodwen-toUnsignedInt (quotient x y) bits)))
(define bs+ (lambda (x y bits) (blodwen-toSignedInt (+ x y) bits)))
(define bs- (lambda (x y bits) (blodwen-toSignedInt (- x y) bits)))
(define bs* (lambda (x y bits) (blodwen-toSignedInt (* x y) bits)))
(define bs/ (lambda (x y bits) (blodwen-toSignedInt (blodwen-euclidDiv x y) bits)))
; To match Chez
(define (fxadd1 x) (unsafe-fx+ x 1))
(define (fxsub1 x) (unsafe-fx- x 1))
(define (integer->bits8 x) (bitwise-and x #xff))
(define (integer->bits16 x) (bitwise-and x #xffff))
(define (integer->bits32 x) (bitwise-and x #xffffffff))
(define (integer->bits64 x) (bitwise-and x #xffffffffffffffff))
(define (bits16->bits8 x) (bitwise-and x #xff))
(define (bits32->bits8 x) (bitwise-and x #xff))
(define (bits64->bits8 x) (bitwise-and x #xff))
(define (bits32->bits16 x) (bitwise-and x #xffff))
(define (bits64->bits16 x) (bitwise-and x #xffff))
(define (bits64->bits32 x) (bitwise-and x #xffffffff))
(define blodwen-bits-shl (lambda (x y bits) (remainder (arithmetic-shift x y) (arithmetic-shift 1 bits))))
(define blodwen-shl (lambda (x y) (arithmetic-shift x y)))
(define blodwen-shr (lambda (x y) (arithmetic-shift x (- y))))
(define blodwen-and (lambda (x y) (bitwise-and x y)))
(define blodwen-or (lambda (x y) (bitwise-ior x y)))
(define blodwen-xor (lambda (x y) (bitwise-xor x y)))
(define exact-floor
(lambda (x)
(inexact->exact (floor x))))
(define blodwen-bits-shl-signed
(lambda (x y bits) (blodwen-toSignedInt (arithmetic-shift x y) bits)))
(define exact-truncate
(lambda (x)
(inexact->exact (truncate x))))
(define exact-truncate-boundedInt
(lambda (x y)
(blodwen-toSignedInt (exact-truncate x) y)))
(define exact-truncate-boundedUInt
(lambda (x y)
(blodwen-toUnsignedInt (exact-truncate x) y)))
(define cast-char-boundedInt
(lambda (x y)
(blodwen-toSignedInt (char->integer x) y)))
(define cast-char-boundedUInt
(lambda (x y)
(blodwen-toUnsignedInt (char->integer x) y)))
(define cast-string-int
(lambda (x)
(exact-truncate (cast-num (string->number (destroy-prefix x))))))
(define cast-string-boundedInt
(lambda (x y)
(blodwen-toSignedInt (cast-string-int x) y)))
(define cast-string-boundedUInt
(lambda (x y)
(blodwen-toUnsignedInt (cast-string-int x) y)))
(define cast-num
(lambda (x)
(if (number? x) x 0)))
(define destroy-prefix
(lambda (x)
(cond
((equal? x "") "")
((equal? (string-ref x 0) #\#) "")
(else x))))
(define cast-int-char
(lambda (x)
(if (or
(and (>= x 0) (<= x #xd7ff))
(and (>= x #xe000) (<= x #x10ffff)))
(integer->char x)
(integer->char 0))))
(define cast-string-double
(lambda (x)
(exact->inexact (cast-num (string->number (destroy-prefix x))))))
(define (string-concat xs) (apply string-append xs))
(define (string-unpack s) (string->list s))
(define (string-pack xs) (list->string xs))
(define string-cons (lambda (x y) (string-append (string x) y)))
(define string-reverse (lambda (x)
(list->string (reverse (string->list x)))))
(define (string-substr off len s)
(let* ((l (string-length s))
(b (max 0 off))
(x (max 0 len))
(end (min l (+ b x))))
(substring s b end)))
(define (blodwen-string-iterator-new s)
0)
(define (blodwen-string-iterator-to-string _ s ofs f)
(f (substring s ofs (string-length s))))
(define (blodwen-string-iterator-next s ofs)
(if (>= ofs (string-length s))
'() ; EOF
(cons (string-ref s ofs) (+ ofs 1))))
(define either-left
(lambda (x)
(vector 0 x)))
(define either-right
(lambda (x)
(vector 1 x)))
(define blodwen-error-quit
(lambda (msg)
(display msg)
(newline)
(exit 1)))
(define (blodwen-get-line p)
(if (port? p)
(let ((str (read-line p)))
(if (eof-object? str)
""
str))
(void)))
(define (blodwen-get-char p)
(if (port? p)
(let ((chr (read-char p)))
(if (eof-object? chr)
#\nul
chr))
(void)))
;; Buffers
(define (blodwen-new-buffer size)
(make-bytevector size 0))
(define (blodwen-buffer-size buf)
(bytevector-length buf))
(define (blodwen-buffer-setbyte buf loc val)
(bytevector-u8-set! buf loc val))
(define (blodwen-buffer-getbyte buf loc)
(bytevector-u8-ref buf loc))
(define (blodwen-buffer-setbits16 buf loc val)
(bytevector-u16-set! buf loc val (native-endianness)))
(define (blodwen-buffer-getbits16 buf loc)
(bytevector-u16-ref buf loc (native-endianness)))
(define (blodwen-buffer-setbits32 buf loc val)
(bytevector-u32-set! buf loc val (native-endianness)))
(define (blodwen-buffer-getbits32 buf loc)
(bytevector-u32-ref buf loc (native-endianness)))
(define (blodwen-buffer-setbits64 buf loc val)
(bytevector-u64-set! buf loc val (native-endianness)))
(define (blodwen-buffer-getbits64 buf loc)
(bytevector-u64-ref buf loc (native-endianness)))
(define (blodwen-buffer-setint32 buf loc val)
(bytevector-s32-set! buf loc val (native-endianness)))
(define (blodwen-buffer-getint32 buf loc)
(bytevector-s32-ref buf loc (native-endianness)))
(define (blodwen-buffer-setint buf loc val)
(bytevector-s64-set! buf loc val (native-endianness)))
(define (blodwen-buffer-getint buf loc)
(bytevector-s64-ref buf loc (native-endianness)))
(define (blodwen-buffer-setdouble buf loc val)
(bytevector-ieee-double-set! buf loc val (native-endianness)))
(define (blodwen-buffer-getdouble buf loc)
(bytevector-ieee-double-ref buf loc (native-endianness)))
(define (blodwen-stringbytelen str)
(bytevector-length (string->utf8 str)))
(define (blodwen-buffer-setstring buf loc val)
(let* [(strvec (string->utf8 val))
(len (bytevector-length strvec))]
(bytevector-copy! strvec 0 buf loc len)))
(define (blodwen-buffer-getstring buf loc len)
(let [(newvec (make-bytevector len))]
(bytevector-copy! buf loc newvec 0 len)
(utf8->string newvec)))
(define (blodwen-buffer-copydata buf start len dest loc)
(bytevector-copy! buf start dest loc len))
;; Threads
;; NB: Racket threads are green/virtual threads meaning extra caution is to be
;; taken when using FFI functions in combination with threads. The *entire*
;; Racket runtime blocks on a foreign call, meaning no threads will progress
;; until the foreign call returns.
(define (blodwen-thread proc)
(thread (lambda () (proc (vector 0)))))
(define (blodwen-thread-wait handle)
(thread-wait handle))
;; Thread mailboxes
(define blodwen-thread-data (make-thread-cell #f))
(define (blodwen-get-thread-data ty)
(thread-cell-ref blodwen-thread-data))
(define (blodwen-set-thread-data ty a)
(thread-cell-set! blodwen-thread-data a))
;; Semaphores
(define (blodwen-make-semaphore init)
(make-semaphore init))
(define (blodwen-semaphore-post sema)
(semaphore-post sema))
(define (blodwen-semaphore-wait sema)
(semaphore-wait sema))
;; Barriers
(struct barrier (count-box num-threads mutex semaphore))
(define (blodwen-make-barrier num-threads)
(barrier (box 0) num-threads (blodwen-make-mutex) (make-semaphore 0)))
(define (blodwen-barrier-wait barrier)
(blodwen-mutex-acquire (barrier-mutex barrier))
(let* [(count-box (barrier-count-box barrier))
(count-old (unbox count-box))
(count-new (+ count-old 1))
(sema (barrier-semaphore barrier))]
(set-box! count-box count-new)
(blodwen-mutex-release (barrier-mutex barrier))
(when (= count-new (barrier-num-threads barrier)) (semaphore-post sema))
(semaphore-wait sema)
(semaphore-post sema)
))
;; Channels
(define (blodwen-make-channel ty)
(make-async-channel 1))
(define (blodwen-channel-get ty chan)
(async-channel-get chan))
(define (blodwen-channel-put ty chan val)
(async-channel-put chan val))
;; Mutex
(define (blodwen-make-mutex)
(make-semaphore 1))
(define (blodwen-mutex-acquire sema)
(semaphore-wait sema))
(define (blodwen-mutex-release sema)
(if (semaphore-try-wait? sema)
(blodwen-error-quit "Exception in mutexRelease: thread does not own mutex")
(semaphore-post sema)))
;; Condition Variables
;; As per p.5 of the MS paper
;; https://www.microsoft.com/en-us/research/wp-content/uploads/2004/12/ImplementingCVs.pdf
; The MS paper has the mutex be part of the CV, but that seems to be contrary to
; most other implementations
(struct cv (countingSem waitersLock waiters handshakeSem) #:mutable)
; CONSTRUCTOR
(define (blodwen-make-cv)
(let ([s (make-semaphore 0)]
[x (make-semaphore 1)]
[h (make-semaphore 0)])
(cv s x 0 h)))
;; MS paper: sem.V() := sem-post /* "sem.V() increments sem.count, atomically" */
;; sem.P() := sem-wait
;; (turns out this is Dijkstra's fault: P and V match up with the Dutch
;; terminology)
; WAIT
(define (blodwen-cv-wait my-cv m)
; atomically increment waiters
(semaphore-wait (cv-waitersLock my-cv))
(set-cv-waiters! my-cv (+ (cv-waiters my-cv) 1))
(semaphore-post (cv-waitersLock my-cv))
; release the provided mutex
(blodwen-mutex-release m)
; wait for the counting semaphore to let us through
(semaphore-wait (cv-countingSem my-cv))
; signal to broadcast that we have proceeded past the critical point/have
; been woken up successfully
(semaphore-post (cv-handshakeSem my-cv))
; re-acquire the provided mutex
(blodwen-mutex-acquire m)
)
; SIGNAL
(define (blodwen-cv-signal my-cv)
; lock access to waiters
(semaphore-wait (cv-waitersLock my-cv))
(let ([waiters (cv-waiters my-cv)])
(if (> waiters 0)
; if we have waiting threads, signal one of them
(begin
(set-cv-waiters! my-cv (- waiters 1))
; increment the counting semaphore to wake up a thread
(semaphore-post (cv-countingSem my-cv))
; wait for the thread to tell us it's okay to proceed
(semaphore-wait (cv-handshakeSem my-cv))
)
; otherwise, do nothing
(void)
)
; unlock access to waiters
(semaphore-post (cv-waitersLock my-cv))
))
; BROADCAST HELPERS
; for (int i = 0; i < waiters; i++) s.V();
(define (broadcast-for-helper my-cv i)
(if (= i 0)
; if i is zero, we're done
(void)
; otherwise, we signal one waiting thread, decrement i, and keep going
(begin
(semaphore-post (cv-countingSem my-cv))
(broadcast-for-helper my-cv (- i 1))
)))
; while (waiters > 0) { waiters--; h.P(); }
(define (broadcast-while-helper my-cv waiters)
(if (= waiters 0)
; if waiters is 0, we're done
(void)
; otherwise, wait for "waiters" many threads to tell us they're awake
(begin
(semaphore-wait (cv-handshakeSem my-cv))
(broadcast-while-helper my-cv (- waiters 1))
)))
; BROADCAST
(define (blodwen-cv-broadcast my-cv)
; lock access to waiters
(semaphore-wait (cv-waitersLock my-cv))
(let ([waiters (cv-waiters my-cv)])
; signal "waiters" many threads; counting *until* 0 in the helper
; function, hence "waiters" and NOT "waiters - 1"
(broadcast-for-helper my-cv waiters)
; wait on "waiters" many threads to have been woken
(broadcast-while-helper my-cv waiters)
; unlock access to waiters
(semaphore-post (cv-waitersLock my-cv))
))
; FIXME: Maybe later. Possibly difficult because of the handshake thingy?
;(define (blodwen-cv-wait-timeout my-cv lockM timeout)
; ;; precondition: calling thread holds lockM
; (semaphore-wait (cv-waitersLock my-cv)) ; x.P()
; (set-cv-waiters! my-cv (+ (cv-waiters my-cv) 1)) ; waiters++
; (semaphore-post (cv-waitersLock my-cv)) ; x.V()
; (blodwen-mutex-release lockM) ; m.Release()
;
; (sync/timeout (/ timeout 1000000) (cv-countingSem my-cv))
;
; (semaphore-wait (cv-countingSem my-cv)) ; s.P()
; (semaphore-post (cv-handshakeSem my-cv)) ; h.V()
; (blodwen-mutex-acquire lockM) ; m.Acquire()
; )
(define (blodwen-make-future work) (future work))
(define (blodwen-await-future ty future) (touch future))
;; NB: These should *ALWAYS* be used in multi-threaded programs since Racket
;; threads are green/virtual threads and so using an external function will
;; block the *entire* runtime until the function returns. This is fine for most
;; things, but not for `sleep`.
(define (blodwen-sleep s) (sleep s))
(define (blodwen-usleep us) (sleep (* 0.000001 us)))
(define (blodwen-clock-time-utc) (current-time 'time-utc))
(define (blodwen-clock-time-monotonic) (current-time 'time-monotonic))
(define (blodwen-clock-time-duration) (current-time 'time-duration))
(define (blodwen-clock-time-process) (current-time 'time-process))
(define (blodwen-clock-time-thread) (current-time 'time-thread))
(define (blodwen-clock-time-gccpu) 0) ;; unsupported
(define (blodwen-clock-time-gcreal) 0) ;; unsupported
(define (blodwen-is-time? clk) (if (time? clk) 1 0))
(define (blodwen-clock-second time) (time-second time))
(define (blodwen-clock-nanosecond time) (time-nanosecond time))
(define (blodwen-arg-count)
(+ (vector-length (current-command-line-arguments)) 1))
(define (blodwen-arg n)
(cond
((= n 0) (path->string (find-system-path 'run-file)))
((< n (+ (vector-length (current-command-line-arguments)) 1))
(vector-ref (current-command-line-arguments) (- n 1)))
(else "")))
;; Randoms
(random-seed (date*-nanosecond (current-date))) ; initialize random seed
(define (blodwen-random-seed s) (random-seed s))
(define blodwen-random
(case-lambda
;; no argument, pick a real value from [0, 1.0)
[() (random)]
;; single argument k, pick an integral value from [0, k)
[(k) (if (> k 0)
(random k)
(raise 'blodwen-random-invalid-range-argument))]))
;; For finalisers
(define (blodwen-register-object obj proc)
(register-finalizer obj (lambda (ptr) ((proc ptr) 'erased)))
obj)
;; For creating and reading back scheme objects
(define ns (make-base-namespace))
; read a scheme string and evaluate it, returning 'Just result' on success
; TODO: catch exception!
(define (blodwen-eval-scheme str)
(with-handlers ([exn:fail? (lambda (x) '())]) ; Nothing on failure
(box (eval (read (open-input-string str)) ns))) ; box == Just
)
(define (blodwen-eval-okay obj)
(if (null? obj)
0
1))
(define (blodwen-get-eval-result obj)
(unbox obj))
(define (blodwen-debug-scheme obj)
(display obj) (newline))
(define (blodwen-is-number obj)
(if (number? obj) 1 0))
(define (blodwen-is-integer obj)
(if (and (number? obj) (exact? obj)) 1 0))
(define (blodwen-is-float obj)
(if (flonum? obj) 1 0))
(define (blodwen-is-char obj)
(if (char? obj) 1 0))
(define (blodwen-is-string obj)
(if (string? obj) 1 0))
(define (blodwen-is-procedure obj)
(if (procedure? obj) 1 0))
(define (blodwen-is-symbol obj)
(if (symbol? obj) 1 0))
(define (blodwen-is-vector obj)
(if (vector? obj) 1 0))
(define (blodwen-is-nil obj)
(if (null? obj) 1 0))
(define (blodwen-is-pair obj)
(if (pair? obj) 1 0))
(define (blodwen-is-box obj)
(if (box? obj) 1 0))
(define (blodwen-make-symbol str)
(string->symbol str))
; The below rely on checking that the objects are the right type first.
(define (blodwen-vector-ref obj i)
(vector-ref obj i))
(define (blodwen-vector-length obj)
(vector-length obj))
(define (blodwen-vector-list obj)
(vector->list obj))
(define (blodwen-unbox obj)
(unbox obj))
(define (blodwen-apply obj arg)
(obj arg))
(define (blodwen-force obj)
(obj))
(define (blodwen-read-symbol sym)
(symbol->string sym))
(define (blodwen-id x) x)