Idris2/libs/base/Deriving/Common.idr
2022-11-02 11:57:07 +00:00

225 lines
7.4 KiB
Idris

module Deriving.Common
import Data.SnocList
import Language.Reflection
%default total
------------------------------------------------------------------------------
-- Being free of a variable
||| IsFreeOf is parametrised by
||| @ x the name of the type variable that the functioral action will change
||| @ ty the type that does not contain any mention of x
export
data IsFreeOf : (x : Name) -> (ty : TTImp) -> Type where
||| For now we do not bother keeping precise track of the proof that a type
||| is free of x
TrustMeFO : IsFreeOf a x
||| We may need to manufacture proofs and so we provide the `assert` escape hatch.
export
assert_IsFreeOf : IsFreeOf x ty
assert_IsFreeOf = TrustMeFO
||| Testing function deciding whether the given term is free of a particular
||| variable.
export
isFreeOf : (x : Name) -> (ty : TTImp) -> Maybe (IsFreeOf x ty)
isFreeOf x ty
= do isOk <- flip mapMTTImp ty $ \case
t@(IVar _ v) => t <$ guard (v /= x)
t => pure t
pure TrustMeFO
------------------------------------------------------------------------------
-- Being a (data) type
public export
record IsType where
constructor MkIsType
typeConstructor : Name
parameterNames : List (Argument Name, Nat)
dataConstructors : List (Name, TTImp)
wording : NameType -> String
wording Bound = "a bound variable"
wording Func = "a function name"
wording (DataCon tag arity) = "a data constructor"
wording (TyCon tag arity) = "a type constructor"
isTypeCon : Elaboration m => Name -> m (List (Name, TTImp))
isTypeCon ty = do
[(_, MkNameInfo (TyCon _ _))] <- getInfo ty
| [] => fail "\{show ty} out of scope"
| [(_, MkNameInfo nt)] => fail "\{show ty} is \{wording nt} rather than a type constructor"
| _ => fail "\{show ty} is ambiguous"
cs <- getCons ty
for cs $ \ n => do
[(_, ty)] <- getType n
| _ => fail "\{show n} is ambiguous"
pure (n, ty)
export
isType : Elaboration m => TTImp -> m IsType
isType = go Z [] where
go : Nat -> List (Argument Name, Nat) -> TTImp -> m IsType
go idx acc (IVar _ n) = MkIsType n (map (map (minus idx . S)) acc) <$> isTypeCon n
go idx acc (IApp _ t (IVar _ nm)) = case nm of
-- Unqualified: that's a local variable
UN (Basic _) => go (S idx) ((Arg emptyFC nm, idx) :: acc) t
_ => go (S idx) acc t
go idx acc (INamedApp _ t nm (IVar _ nm')) = case nm' of
-- Unqualified: that's a local variable
UN (Basic _) => go (S idx) ((NamedArg emptyFC nm nm', idx) :: acc) t
_ => go (S idx) acc t
go idx acc (IAutoApp _ t (IVar _ nm)) = case nm of
-- Unqualified: that's a local variable
UN (Basic _) => go (S idx) ((AutoArg emptyFC nm, idx) :: acc) t
_ => go (S idx) acc t
go idx acc t = fail "Expected a type constructor, got: \{show t}"
------------------------------------------------------------------------------
-- Being a (data) constructor with a parameter
-- TODO: generalise?
public export
record ConstructorView where
constructor MkConstructorView
params : SnocList (Name, Nat)
conArgTypes : List (Count, Argument TTImp)
export
constructorView : TTImp -> Maybe ConstructorView
constructorView (IPi fc rig pinfo x a b) = do
let Just arg = fromPiInfo fc pinfo x a
| Nothing => constructorView b -- this better be a boring argument...
let True = rig /= M1
| False => constructorView b -- this better be another boring argument...
{ conArgTypes $= ((rig, arg) ::) } <$> constructorView b
constructorView f = do
MkAppView _ ts _ <- appView f
let range = [<] <>< [0..minus (length ts) 1]
let ps = flip mapMaybe (zip ts range) $ \ t => the (Maybe (Name, Nat)) $ case t of
(Arg _ (IVar _ nm), n) => Just (nm, n)
_ => Nothing
pure (MkConstructorView ps [])
------------------------------------------------------------------------------
-- Satisfying an interface
--
-- In order to derive Functor for `data Tree a = Node (List (Tree a))`, we need
-- to make sure that `Functor List` already exists. This is done using the following
-- convenience functions.
export
withParams : FC -> (Nat -> Maybe TTImp) -> List (Argument Name, Nat) -> TTImp -> TTImp
withParams fc params nms t = go nms where
addConstraint : Maybe TTImp -> Name -> TTImp -> TTImp
addConstraint Nothing _ = id
addConstraint (Just cst) nm =
let ty = IApp fc cst (IVar fc nm) in
IPi fc MW AutoImplicit Nothing ty
go : List (Argument Name, Nat) -> TTImp
go [] = t
go ((arg, pos) :: nms)
= let nm = unArg arg in
IPi fc M0 ImplicitArg (Just nm) (Implicit fc True)
$ addConstraint (params pos) nm
$ go nms
||| Type of proofs that something has a given type
export
data HasType : (nm : Name) -> (ty : TTImp) -> Type where
TrustMeHT : HasType nm ty
export
hasType : Elaboration m => (nm : Name) ->
m (Maybe (ty : TTImp ** HasType nm ty))
hasType nm = catch $ do
[(_, ty)] <- getType nm
| _ => fail "Ambiguous name"
pure (ty ** TrustMeHT)
||| Type of proofs that a type is inhabited
export
data IsProvable : (ty : TTImp) -> Type where
TrustMeIP : IsProvable ty
export
isProvable : Elaboration m => (ty : TTImp) ->
m (Maybe (IsProvable ty))
isProvable ty = catch $ do
ty <- check {expected = Type} ty
ignore $ check {expected = ty} `(%search)
pure TrustMeIP
||| Type of proofs that a type satisfies a constraint.
||| Internally it's vacuous. We don't export the constructor so
||| that users cannot manufacture buggy proofs.
export
data HasImplementation : (intf : a -> Type) -> TTImp -> Type where
TrustMeHI : HasImplementation intf t
||| We may need to manufacture proofs and so we provide the `assert` escape hatch.
export
assert_hasImplementation : HasImplementation intf t
assert_hasImplementation = TrustMeHI
||| Given
||| @ intf an interface (e.g. `Functor`, or `Bifunctor`)
||| @ t a term corresponding to a (possibly partially applied) type constructor
||| check whether Idris2 can find a proof that t satisfies the interface.
export
hasImplementation : Elaboration m => (intf : a -> Type) -> (t : TTImp) ->
m (Maybe (HasImplementation intf t))
hasImplementation c t = catch $ do
prf <- isType t
intf <- quote c
ty <- check {expected = Type} $ withParams emptyFC (const Nothing) prf.parameterNames `(~(intf) ~(t))
ignore $ check {expected = ty} `(%search)
pure TrustMeHI
------------------------------------------------------------------------------
-- Utils
||| Optionally eta-expand if there is no argument available
export
optionallyEta : FC -> Maybe TTImp -> (TTImp -> TTImp) -> TTImp
optionallyEta fc (Just t) f = f t
optionallyEta fc Nothing f =
let tnm = UN $ Basic "t" in
ILam fc MW ExplicitArg (Just tnm) (Implicit fc False) $
f (IVar fc tnm)
||| We often apply multiple arguments, this makes things simpler
export
apply : FC -> TTImp -> List TTImp -> TTImp
apply fc t ts = apply t (map (Arg fc) ts)
||| Use unqualified names (useful for more compact printing)
export
cleanup : TTImp -> TTImp
cleanup = \case
IVar fc n => IVar fc (dropNS n)
t => t
||| Create fresh names
export
freshName : List Name -> String -> String
freshName ns a = assert_total $ go (basicNames ns) Nothing where
basicNames : List Name -> List String
basicNames = mapMaybe $ \ nm => case dropNS nm of
UN (Basic str) => Just str
_ => Nothing
covering
go : List String -> Maybe Nat -> String
go ns mi =
let nm = a ++ maybe "" show mi in
ifThenElse (nm `elem` ns) (go ns (Just $ maybe 0 S mi)) nm