Idris2/libs/prelude/Prelude/Num.idr
Stefan Höck 6ed266d306
[ new ] Missing integer type interfaces (#1629)
Co-authored-by: Guillaume ALLAIS <guillaume.allais@ens-lyon.org>
2021-06-28 20:00:10 +01:00

361 lines
6.5 KiB
Idris

module Prelude.Num
import Builtin
import Prelude.Basics
import Prelude.EqOrd
import Prelude.Ops
%default total
------------------------
-- NUMERIC INTERFACES --
------------------------
%integerLit fromInteger
||| The Num interface defines basic numerical arithmetic.
public export
interface Num ty where
constructor MkNum
(+) : ty -> ty -> ty
(*) : ty -> ty -> ty
||| Conversion from Integer.
fromInteger : Integer -> ty
%allow_overloads fromInteger
||| The `Neg` interface defines operations on numbers which can be negative.
public export
interface Num ty => Neg ty where
constructor MkNeg
||| The underlying of unary minus. `-5` desugars to `negate (fromInteger 5)`.
negate : ty -> ty
(-) : ty -> ty -> ty
||| Numbers for which the absolute value is defined should implement `Abs`.
public export
interface Num ty => Abs ty where
constructor MkAbs
||| Absolute value.
abs : ty -> ty
public export
interface Num ty => Fractional ty where
constructor MkFractional
partial
(/) : ty -> ty -> ty
partial
recip : ty -> ty
recip x = 1 / x
public export
interface Num ty => Integral ty where
constructor MkIntegral
partial
div : ty -> ty -> ty
partial
mod : ty -> ty -> ty
----- Instances for primitives
-- Integer
%inline
public export
Num Integer where
(+) = prim__add_Integer
(*) = prim__mul_Integer
fromInteger = id
public export
Neg Integer where
negate x = prim__sub_Integer 0 x
(-) = prim__sub_Integer
public export
Abs Integer where
abs x = if x < 0 then -x else x
public export
Integral Integer where
div x y
= case y == 0 of
False => prim__div_Integer x y
mod x y
= case y == 0 of
False => prim__mod_Integer x y
-- This allows us to pick integer as a default at the end of elaboration if
-- all other possibilities fail. I don't plan to provide a nicer syntax for
-- this...
%defaulthint
%inline
public export
defaultInteger : Num Integer
defaultInteger = %search
-- Int
%inline
public export
Num Int where
(+) = prim__add_Int
(*) = prim__mul_Int
fromInteger = prim__cast_IntegerInt
public export
Neg Int where
negate x = prim__sub_Int 0 x
(-) = prim__sub_Int
public export
Abs Int where
abs x = if x < 0 then -x else x
public export
Integral Int where
div x y
= case y == 0 of
False => prim__div_Int x y
mod x y
= case y == 0 of
False => prim__mod_Int x y
-- Int8
%inline
public export
Num Int8 where
(+) = prim__add_Int8
(*) = prim__mul_Int8
fromInteger = prim__cast_IntegerInt8
public export
Neg Int8 where
negate x = prim__sub_Int8 0 x
(-) = prim__sub_Int8
public export
Abs Int8 where
abs x = if x < 0 then -x else x
public export
Integral Int8 where
div x y
= case y == 0 of
False => prim__div_Int8 x y
mod x y
= case y == 0 of
False => prim__mod_Int8 x y
-- Int16
%inline
public export
Num Int16 where
(+) = prim__add_Int16
(*) = prim__mul_Int16
fromInteger = prim__cast_IntegerInt16
public export
Neg Int16 where
negate x = prim__sub_Int16 0 x
(-) = prim__sub_Int16
public export
Abs Int16 where
abs x = if x < 0 then -x else x
public export
Integral Int16 where
div x y
= case y == 0 of
False => prim__div_Int16 x y
mod x y
= case y == 0 of
False => prim__mod_Int16 x y
-- Int32
%inline
public export
Num Int32 where
(+) = prim__add_Int32
(*) = prim__mul_Int32
fromInteger = prim__cast_IntegerInt32
public export
Neg Int32 where
negate x = prim__sub_Int32 0 x
(-) = prim__sub_Int32
public export
Abs Int32 where
abs x = if x < 0 then -x else x
public export
Integral Int32 where
div x y
= case y == 0 of
False => prim__div_Int32 x y
mod x y
= case y == 0 of
False => prim__mod_Int32 x y
-- Int64
%inline
public export
Num Int64 where
(+) = prim__add_Int64
(*) = prim__mul_Int64
fromInteger = prim__cast_IntegerInt64
public export
Neg Int64 where
negate x = prim__sub_Int64 0 x
(-) = prim__sub_Int64
public export
Abs Int64 where
abs x = if x < 0 then -x else x
public export
Integral Int64 where
div x y
= case y == 0 of
False => prim__div_Int64 x y
mod x y
= case y == 0 of
False => prim__mod_Int64 x y
-- Bits8
%inline
public export
Num Bits8 where
(+) = prim__add_Bits8
(*) = prim__mul_Bits8
fromInteger = prim__cast_IntegerBits8
public export
Neg Bits8 where
negate x = prim__sub_Bits8 0 x
(-) = prim__sub_Bits8
public export
Abs Bits8 where
abs x = if x < 0 then -x else x
public export
Integral Bits8 where
div x y
= case y == 0 of
False => prim__div_Bits8 x y
mod x y
= case y == 0 of
False => prim__mod_Bits8 x y
-- Bits16
%inline
public export
Num Bits16 where
(+) = prim__add_Bits16
(*) = prim__mul_Bits16
fromInteger = prim__cast_IntegerBits16
public export
Neg Bits16 where
negate x = prim__sub_Bits16 0 x
(-) = prim__sub_Bits16
public export
Abs Bits16 where
abs x = if x < 0 then -x else x
public export
Integral Bits16 where
div x y
= case y == 0 of
False => prim__div_Bits16 x y
mod x y
= case y == 0 of
False => prim__mod_Bits16 x y
-- Bits32
%inline
public export
Num Bits32 where
(+) = prim__add_Bits32
(*) = prim__mul_Bits32
fromInteger = prim__cast_IntegerBits32
public export
Neg Bits32 where
negate x = prim__sub_Bits32 0 x
(-) = prim__sub_Bits32
public export
Abs Bits32 where
abs x = if x < 0 then -x else x
public export
Integral Bits32 where
div x y
= case y == 0 of
False => prim__div_Bits32 x y
mod x y
= case y == 0 of
False => prim__mod_Bits32 x y
-- Bits64
%inline
public export
Num Bits64 where
(+) = prim__add_Bits64
(*) = prim__mul_Bits64
fromInteger = prim__cast_IntegerBits64
public export
Neg Bits64 where
negate x = prim__sub_Bits64 0 x
(-) = prim__sub_Bits64
public export
Abs Bits64 where
abs x = if x < 0 then -x else x
public export
Integral Bits64 where
div x y
= case y == 0 of
False => prim__div_Bits64 x y
mod x y
= case y == 0 of
False => prim__mod_Bits64 x y
-- Double
public export
Num Double where
(+) = prim__add_Double
(*) = prim__mul_Double
fromInteger = prim__cast_IntegerDouble
public export
Neg Double where
negate x = prim__negate_Double x
(-) = prim__sub_Double
public export
Abs Double where
abs x = if x < 0 then -x else x
public export
Fractional Double where
(/) = prim__div_Double