Idris2/tests/base/deriving_foldable/expected
2022-11-02 11:57:07 +00:00

77 lines
4.2 KiB
Plaintext

1/1: Building DeriveFoldable (DeriveFoldable.idr)
LOG derive.foldable.clauses:1:
foldMapList : {0 a, b : Type} -> Monoid b => (a -> b) -> List a -> b
foldMapList f Nil = neutral
foldMapList f (x1 :: x2) = (f x1) <+> (foldMapList f x2)
LOG derive.foldable.clauses:1:
foldMapMaybe : {0 a, b : Type} -> Monoid b => (a -> b) -> Maybe a -> b
foldMapMaybe f Nothing = neutral
foldMapMaybe f (Just x1) = f x1
LOG derive.foldable.clauses:1:
foldMapEither : {0 err : _} -> {0 a, b : Type} -> Monoid b => (a -> b) -> Either err a -> b
foldMapEither f (Left x2) = neutral
foldMapEither f (Right x2) = f x2
LOG derive.foldable.clauses:1:
foldMapPair : {0 a : _} -> {0 a0, b : Type} -> Monoid b => (a0 -> b) -> Pair a a0 -> b
foldMapPair f (MkPair x2 x3) = f x3
LOG derive.foldable.clauses:1:
foldMapConstant : {0 a : _} -> {0 a0, b : Type} -> Monoid b => (a0 -> b) -> Constant a a0 -> b
foldMapConstant f (MkConstant x2) = neutral
LOG derive.foldable.clauses:1:
foldMapVect : {0 n : _} -> {0 a, b : Type} -> Monoid b => (a -> b) -> Vect n a -> b
foldMapVect f Nil = neutral
foldMapVect f (x2 :: x3) = (f x2) <+> (foldMapVect f x3)
LOG derive.foldable.clauses:1:
foldMapMatrix : {0 m, n : _} -> {0 a, b : Type} -> Monoid b => (a -> b) -> Matrix m n a -> b
foldMapMatrix f (MkMatrix x3) = foldMap (foldMap f) x3
LOG derive.foldable.clauses:1:
foldMapTm : {0 a, b : Type} -> Monoid b => (a -> b) -> Tm a -> b
foldMapTm f (Var x1) = f x1
foldMapTm f (Call x2 x3) = foldMap (assert_total (foldMapTm f)) x3
foldMapTm f (Lam x1) = foldMapTm (foldMap f) x1
LOG derive.foldable.clauses:1:
foldMapTree : {0 a, b : Type} -> Monoid b => (a -> b) -> Tree a -> b
foldMapTree f (Leaf x1) = f x1
foldMapTree f (Node x1) = assert_total (foldMap f x1)
LOG derive.foldable.clauses:1:
foldMapForest : {0 a, b : Type} -> Monoid b => (a -> b) -> Forest a -> b
foldMapForest f Empty = neutral
foldMapForest f (Plant x1 x2) = (assert_total (foldMap f x1)) <+> (foldMapForest f x2)
LOG derive.foldable.clauses:1:
foldMapList1 : {0 a, b : Type} -> Monoid b => (a -> b) -> List1 a -> b
foldMapList1 f (MkList1 x1) = bifoldMap f (foldMap (assert_total (foldMapList1 f))) x1
LOG derive.foldable.clauses:1:
foldMapFull : {0 a, b : Type} -> Monoid b => (a -> b) -> Full a -> b
foldMapFull f (Leaf x1) = f x1
foldMapFull f (Node x1) = foldMapFull (bifoldMap f f) x1
LOG derive.foldable.clauses:1:
foldMapLAZY : {0 a, b : Type} -> Monoid b => (a -> b) -> LAZY a -> b
foldMapLAZY f (MkLAZY x1) = f x1
LOG derive.foldable.clauses:1:
foldMapRose : {0 a, b : Type} -> Monoid b => (a -> b) -> Rose a -> b
foldMapRose f (Node x1) = foldMap (\ eta => assert_total (foldMapRose f eta)) x1
LOG derive.foldable.assumption:10: I am assuming that the parameter m is a Foldable
LOG derive.foldable.clauses:1:
foldMapMaybeT : {0 m : _} -> Foldable m => {0 a, b : Type} -> Monoid b => (a -> b) -> MaybeT m a -> b
foldMapMaybeT f (MkMaybeT x2) = foldMap (foldMap f) x2
LOG derive.foldable.assumption:10: I am assuming that the parameter layer is a Bifoldable
LOG derive.foldable.clauses:1:
foldMapTreeT : {0 lbl, layer : _} -> Bifoldable layer => {0 a, b : Type} -> Monoid b => (a -> b) -> TreeT lbl layer a -> b
foldMapTreeT f (MkTreeT x3 x4) = bifoldMap f (foldMapTreeT f) x4
LOG derive.foldable.clauses:1:
foldMapTree : {0 a, b : Type} -> Monoid b => (a -> b) -> Tree a -> b
foldMapTree f (MkTree x1) = foldMap f x1
LOG derive.foldable.clauses:1:
foldMapIVect : {0 m : _} -> {0 a, b : Type} -> Monoid b => (a -> b) -> IVect {n = m} a -> b
foldMapIVect f (MkIVect x2) = foldMap f x2
LOG derive.foldable.clauses:1:
foldMapEqMap : {0 key, eq : _} -> {0 a, b : Type} -> Monoid b => (a -> b) -> EqMap key {{conArg:5707} = eq} a -> b
foldMapEqMap f (MkEqMap x3) = foldMap (foldMap f) x3
LOG derive.foldable.clauses:1:
foldMapTree : {0 l : _} -> {0 a, b : Type} -> Monoid b => (a -> b) -> Tree l a -> b
foldMapTree f (Leaf x2) = neutral
foldMapTree f (Node x2 x3 x4) = (foldMapTree f x2) <+> ((f x3) <+> (foldMapTree f x4))
LOG derive.foldable.clauses:1:
foldMapTriple : {0 a, b : _} -> {0 a0, b0 : Type} -> Monoid b0 => (a0 -> b0) -> Triple a b a0 -> b0
foldMapTriple f (MkTriple x3 x4 x5) = f x5