Idris2/libs/contrib/Control/Arrow.idr
2021-05-10 11:54:23 +01:00

133 lines
4.6 KiB
Idris

module Control.Arrow
import Control.Category
import Data.Either
import Data.Morphisms
infixr 5 <++>
infixr 3 ***
infixr 3 &&&
infixr 2 +++
infixr 2 \|/
public export
interface Category arr => Arrow (0 arr : Type -> Type -> Type) where
||| Converts a function from input to output into a arrow computation.
arrow : (a -> b) -> arr a b
||| Converts an arrow from `a` to `b` into an arrow on pairs, that applies
||| its argument to the first component and leaves the second component
||| untouched, thus saving its value across a computation.
first : arr a b -> arr (a, c) (b, c)
||| Converts an arrow from `a` to `b` into an arrow on pairs, that applies
||| its argument to the second component and leaves the first component
||| untouched, thus saving its value across a computation.
second : arr a b -> arr (c, a) (c, b)
second f = arrow {arr = arr} swap >>> first f >>> arrow {arr = arr} swap
where
swap : (x, y) -> (y, x)
swap (a, b) = (b, a)
||| A combinator which processes both components of a pair.
(***) : arr a b -> arr a' b' -> arr (a, a') (b, b')
f *** g = first f >>> second g
||| A combinator which builds a pair from the results of two arrows.
(&&&) : arr a b -> arr a b' -> arr a (b, b')
f &&& g = arrow dup >>> f *** g
public export
implementation Arrow Morphism where
arrow f = Mor f
first (Mor f) = Mor $ \(a, b) => (f a, b)
second (Mor f) = Mor $ \(a, b) => (a, f b)
(Mor f) *** (Mor g) = Mor $ \(a, b) => (f a, g b)
(Mor f) &&& (Mor g) = Mor $ \a => (f a, g a)
public export
implementation Monad m => Arrow (Kleislimorphism m) where
arrow f = Kleisli (pure . f)
first (Kleisli f) = Kleisli $ \(a, b) => do x <- f a
pure (x, b)
second (Kleisli f) = Kleisli $ \(a, b) => do x <- f b
pure (a, x)
(Kleisli f) *** (Kleisli g) = Kleisli $ \(a, b) => do x <- f a
y <- g b
pure (x, y)
(Kleisli f) &&& (Kleisli g) = Kleisli $ \a => do x <- f a
y <- g a
pure (x, y)
public export
interface Arrow arr => ArrowZero (0 arr : Type -> Type -> Type) where
zeroArrow : arr a b
public export
interface ArrowZero arr => ArrowPlus (0 arr : Type -> Type -> Type) where
(<++>) : arr a b -> arr a b -> arr a b
public export
interface Arrow arr => ArrowChoice (0 arr : Type -> Type -> Type) where
left : arr a b -> arr (Either a c) (Either b c)
right : arr a b -> arr (Either c a) (Either c b)
right f = arrow mirror >>> left f >>> arrow mirror
(+++) : arr a b -> arr c d -> arr (Either a c) (Either b d)
f +++ g = left f >>> right g
(\|/) : arr a b -> arr c b -> arr (Either a c) b
f \|/ g = f +++ g >>> arrow fromEither
where
fromEither : Either b b -> b
fromEither (Left b) = b
fromEither (Right b) = b
public export
implementation Monad m => ArrowChoice (Kleislimorphism m) where
left f = f +++ (arrow id)
right f = (arrow id) +++ f
f +++ g = (f >>> (arrow Left)) \|/ (g >>> (arrow Right))
(Kleisli f) \|/ (Kleisli g) = Kleisli (either f g)
public export
interface Arrow arr => ArrowApply (0 arr : Type -> Type -> Type) where
app : arr (arr a b, a) b
public export
implementation Monad m => ArrowApply (Kleislimorphism m) where
app = Kleisli $ \(Kleisli f, x) => f x
public export
data ArrowMonad : (Type -> Type -> Type) -> Type -> Type where
MkArrowMonad : (runArrowMonad : arr (the Type ()) a) -> ArrowMonad arr a
public export
runArrowMonad : ArrowMonad arr a -> arr (the Type ()) a
runArrowMonad (MkArrowMonad a) = a
public export
implementation Arrow a => Functor (ArrowMonad a) where
map f (MkArrowMonad m) = MkArrowMonad $ m >>> arrow f
public export
implementation Arrow a => Applicative (ArrowMonad a) where
pure x = MkArrowMonad $ arrow $ \_ => x
(MkArrowMonad f) <*> (MkArrowMonad x) = MkArrowMonad $ f &&& x >>> arrow (uncurry id)
public export
implementation ArrowApply a => Monad (ArrowMonad a) where
(MkArrowMonad m) >>= f =
MkArrowMonad $ m >>> (arrow $ \x => (runArrowMonad (f x), ())) >>> app
public export
interface Arrow arr => ArrowLoop (0 arr : Type -> Type -> Type) where
loop : arr (Pair a c) (Pair b c) -> arr a b
||| Applying a binary operator to the results of two arrow computations.
public export
liftA2 : Arrow arr => (a -> b -> c) -> arr d a -> arr d b -> arr d c
liftA2 op f g = (f &&& g) >>> arrow (\(a, b) => a `op` b)