Idris2/libs/contrib/Data/Tree/Perfect.idr
Nick Drozd 61b9a3e4e5
Define and implement Relation interfaces (#1472)
Co-authored-by: Guillaume ALLAIS <guillaume.allais@ens-lyon.org>
2021-07-09 09:06:27 +01:00

126 lines
3.8 KiB
Idris

module Data.Tree.Perfect
import Control.WellFounded
import Decidable.Order.Strict
import Data.Monoid.Exponentiation
import Data.Num.Implementations
import Data.Nat.Views
import Data.Nat
import Data.Nat.Order
import Data.Nat.Order.Strict
import Data.Nat.Order.Properties
import Data.Nat.Exponentiation
import Data.DPair
import Syntax.WithProof
import Syntax.PreorderReasoning.Generic
%default total
public export
data Tree : Nat -> Type -> Type where
Leaf : a -> Tree Z a
Node : Tree n a -> Tree n a -> Tree (S n) a
public export
Functor (Tree n) where
map f (Leaf a) = Leaf (f a)
map f (Node l r) = Node (map f l) (map f r)
public export
replicate : (n : Nat) -> a -> Tree n a
replicate Z a = Leaf a
replicate (S n) a = let t = replicate n a in Node t t
public export
{n : _} -> Applicative (Tree n) where
pure = replicate n
Leaf f <*> Leaf a = Leaf (f a)
Node fl fr <*> Node xl xr = Node (fl <*> xl) (fr <*> xr)
public export
data Path : Nat -> Type where
Here : Path Z
Left : Path n -> Path (S n)
Right : Path n -> Path (S n)
public export
toNat : {n : _} -> Path n -> Nat
toNat Here = Z
toNat (Left p) = toNat p
toNat {n = S n} (Right p) = toNat p + pow2 n
export
toNatBounded : (n : Nat) -> (p : Path n) -> toNat p `LT` pow2 n
toNatBounded Z Here = reflexive {rel = LTE}
toNatBounded (S n) (Left p) = CalcWith $
|~ S (toNat p)
<~ pow2 n ...( toNatBounded n p )
<~ pow2 n + pow2 n ...( lteAddRight (pow2 n) )
~~ pow2 (S n) ...( sym unfoldPow2 )
toNatBounded (S n) (Right p) = CalcWith $
let ih = toNatBounded n p in
|~ S (toNat p) + pow2 n
<~ pow2 n + pow2 n ...( plusLteMonotoneRight _ _ _ ih )
~~ pow2 (S n) ...( sym unfoldPow2 )
namespace FromNat
||| This pattern-matching in `fromNat` is annoying:
||| The `Z (S _)` case is impossible
||| In the `k (S n)` case we want to branch on whether `k `LT` pow2 n`
||| and get our hands on some proofs.
||| This view factors out that work.
public export
data View : (k, n : Nat) -> Type where
ZZ : View Z Z
SLT : (0 p : k `LT` pow2 n) -> View k (S n)
SNLT : (0 p : k `GTE` pow2 n) ->
(0 rec : minus k (pow2 n) `LT` pow2 n) -> View k (S n)
public export
view : (k, n : Nat) -> (0 _ : k `LT` (pow2 n)) -> View k n
view Z Z p = ZZ
view (S _) Z p = void $ absurd (fromLteSucc p)
view k (S n) p with (@@ lt k (pow2 n))
view k (S n) p | (True ** eq) = SLT (ltIsLT k (pow2 n) eq)
view k (S n) p | (False ** eq) = SNLT gte prf where
0 gte : k `GTE` pow2 n
gte = notLTImpliesGTE (notltIsNotLT k (pow2 n) eq)
0 prf : minus k (pow2 n) `LT` pow2 n
prf = CalcWith $
|~ S (minus k (pow2 n))
<~ minus (pow2 (S n)) (pow2 n)
...( minusLtMonotone p pow2Increasing )
~~ minus (pow2 n + pow2 n) (pow2 n)
...( cong (\ m => minus m (pow2 n)) unfoldPow2 )
~~ pow2 n
...( minusPlus (pow2 n) )
||| Convert a natural number to a path in a perfect binary tree
public export
fromNat : (k, n : Nat) -> (0 _ : k `LT` pow2 n) -> Path n
fromNat k n p with (view k n p)
fromNat Z Z p | ZZ = Here
fromNat k (S n) p | SLT lt = Left (fromNat k n lt)
fromNat k (S n) p | SNLT _ lt = Right (fromNat (minus k (pow2 n)) n lt)
||| The `fromNat` conversion is compatible with the semantics `toNat`
export
fromNatCorrect : (k, n : Nat) -> (0 p : k `LT` pow2 n) ->
toNat (fromNat k n p) === k
fromNatCorrect k n p with (view k n p)
fromNatCorrect Z Z p | ZZ = Refl
fromNatCorrect k (S n) p | SLT lt = fromNatCorrect k n lt
fromNatCorrect k (S n) p | SNLT gte lt
= rewrite fromNatCorrect (minus k (pow2 n)) n lt in
irrelevantEq $ plusMinusLte (pow2 n) k gte
public export
lookup : Tree n a -> Path n -> a
lookup (Leaf a) Here = a
lookup (Node l _) (Left p) = lookup l p
lookup (Node _ r) (Right p) = lookup r p