Idris2/support/racket/ct-support.rkt

306 lines
9.3 KiB
Racket

; Block all reductions (e.g. needed when quoting under a 'delay')
(define ct-blockAll
(make-thread-cell #f))
(define (ct-isBlockAll)
(thread-cell-ref ct-blockAll))
(define (ct-setBlockAll x)
(thread-cell-set! ct-blockAll x))
; Check encodings of normal forms
(define (ct-isDataCon val)
(and (vector? val) (>= (vector-ref val 0) 0)))
(define (ct-isConstant val)
(or (number? val) (string? val) (char? val)
(and (vector? val) (<= (vector-ref val 0) -100))))
(define (ct-isTypeCon val)
(and (vector? val) (= (vector-ref val 0) -1)))
(define (ct-isBlocked val)
(and (vector? val) (= (vector-ref val 0) -2)))
(define (ct-isPi val)
(and (vector? val) (= (vector-ref val 0) -3)))
(define (ct-isTypeMatchable val)
(or (ct-isTypeCon val) (ct-isPi val)))
(define (ct-isDelay val)
(and (vector? val) (= (vector-ref val 0) -4)))
(define (ct-isForce val)
(and (vector? val) (= (vector-ref val 0) -5)))
(define (ct-isErased val)
(and (vector? val) (= (vector-ref val 0) -6)))
(define (ct-isType val)
(and (vector? val) (= (vector-ref val 0) -7)))
(define (ct-isLambda val)
(and (vector? val) (= (vector-ref val 0) -8)))
(define (ct-isTopLambda val)
(and (vector? val) (= (vector-ref val 0) -9)))
; A function might be a blocked application, which is represented as
; a vector (-1, name, args), so make a new vector extending args
; (or a meta, which is a vector (-10, name, args))
(define (ct-addArg f a)
(if (vector? f)
(vector (vector-ref f 0) (vector-ref f 1)
(append (vector-ref f 2) (list a)))
(vector -11 f (list a))))
; to apply a function, either run it if it is a function, or add
; a blocked argument if it's stuck
(define (ct-app f a)
(cond
[(ct-isTopLambda f) ((vector-ref f 2) a)]
[(ct-isLambda f) ((vector-ref f 1) a)]
[(procedure? f) (f a)]
[else (ct-addArg f a)]))
; force a delayed evaluation
(define (ct-doForce arg default)
(if (ct-isDelay arg)
((vector-ref arg 4))
default))
; primitives
(define (ct-toSignedInt x bits)
(if (bitwise-bit-set? x bits)
(bitwise-ior x (arithmetic-shift (- 1) bits))
(bitwise-and x (sub1 (arithmetic-shift 1 bits)))))
(define (ct-toUnsignedInt x bits)
(bitwise-and x (sub1 (arithmetic-shift 1 bits))))
(define ct-u+ (lambda (x y bits)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (ct-toUnsignedInt (+ xval yval) bits)))))
(define ct-u- (lambda (x y bits)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (ct-toUnsignedInt (- xval yval) bits)))))
(define ct-u* (lambda (x y bits)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (ct-toUnsignedInt (* xval yval) bits)))))
(define ct-u/ (lambda (x y bits)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (ct-toUnsignedInt (quotient xval yval) bits)))))
(define ct-s+ (lambda (x y bits)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (ct-toSignedInt (+ xval yval) bits)))))
(define ct-s- (lambda (x y bits)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (ct-toSignedInt (- xval yval) bits)))))
(define ct-s* (lambda (x y bits)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (ct-toSignedInt (* xval yval) bits)))))
(define ct-s/ (lambda (x y bits)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (ct-toSignedInt (quotient xval yval) bits)))))
(define ct+ (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (+ xval yval)))))
(define ct- (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (- xval yval)))))
(define ct* (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (* xval yval)))))
(define ct/ (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (quotient xval yval)))))
(define ct-mod (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (remainder xval yval)))))
(define ct-neg (lambda (x)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))]
(vector tag (- xval)))))
(define ct-bits-shl-signed (lambda (x y bits)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (ct-toSignedInt (shl xval yval) bits)))))
(define ct-bits-shl (lambda (x y bits)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (remainder (ash xval yval) (ash 1 bits))))))
(define ct-shl (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (ash xval yval)))))
(define ct-shr (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (ash xval (- yval))))))
(define ct-and (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (logand xval yval)))))
(define ct-or (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (logor xval yval)))))
(define ct-xor (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(vector tag (logxor xval yval)))))
(define ct-string-ref (lambda (x i)
(let [(ival (vector-ref i 1))]
(if (and (>= ival 0) (< ival (string-length x)))
(string-ref x ival)
'()))))
(define ct-string-cons (lambda (x y) (string-append (string x) y)))
(define ct-string-reverse (lambda (x)
(list->string (reverse (string->list x)))))
(define (ct-string-substr offin lenin s)
(let* [(off (vector-ref offin 1))
(len (vector-ref lenin 1))
(l (string-length s))
(b (max 0 off))
(x (max 0 len))
(end (min l (+ b x)))]
(if (> b l)
""
(substring s b end))))
; Don't wrap the result for bool results, we do that in Builtins.idr
(define ct< (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(< xval yval))))
(define ct<= (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(<= xval yval))))
(define ct= (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(= xval yval))))
(define ct>= (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(>= xval yval))))
(define ct> (lambda (x y)
(let [(tag (vector-ref x 0))
(xval (vector-ref x 1))
(yval (vector-ref y 1))]
(> xval yval))))
; casts
; when targetting integers, we add the Vector on the Idris side
(define ct-cast-num
(lambda (x)
(if (number? x) x 0)))
(define destroy-prefix
(lambda (x)
(cond
((equal? x "") "")
((equal? (string-ref x 0) #\#) "")
(else x))))
(define ct-cast-string-double
(lambda (x)
(exact->inexact (cast-num (string->number (destroy-prefix x))))))
(define ct-cast-char-boundedInt
(lambda (x y)
(ct-toSignedInt (char->integer x) y)))
(define ct-cast-char-boundedUInt
(lambda (x y)
(ct-toUnsignedInt (char->integer x) y)))
(define ct-cast-int-char
(lambda (xin)
(let [(x (vector-ref xin 1))]
(if (or
(and (>= x 0) (<= x #xd7ff))
(and (>= x #xe000) (<= x #x10ffff)))
(integer->char x)
(integer->char 0)))))
(define ct-cast-signed
(lambda (xin bits)
(let [(x (vector-ref xin 1))]
(ct-toSignedInt x bits))))
(define ct-cast-unsigned
(lambda (xin bits)
(let [(x (vector-ref xin 1))]
(ct-toUnsignedInt x bits))))
(define ct-cast-string-int
(lambda (x)
(exact-truncate (cast-num (string->number (destroy-prefix x))))))
(define ct-cast-string-boundedInt
(lambda (x y)
(blodwen-toSignedInt (cast-string-int x) y)))
(define ct-cast-string-boundedUInt
(lambda (x y)
(blodwen-toUnsignedInt (cast-string-int x) y)))
(define ct-cast-number-string
(lambda (xin)
(let [(x (vector-ref xin 1))]
(number->string x))))
(define ct-exact-truncate
(lambda (x)
(inexact->exact (truncate x))))
(define ct-exact-truncate-boundedInt
(lambda (x y)
(ct-toSignedInt (exact-truncate x) y)))
(define ct-exact-truncate-boundedUInt
(lambda (x y)
(ct-toUnsignedInt (exact-truncate x) y)))
(define ct-int-double
(lambda (xin)
(let [(x (vector-ref xin 1))]
(exact->inexact x))))