mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-19 01:01:59 +03:00
68 lines
1.9 KiB
Idris
68 lines
1.9 KiB
Idris
module Decidable.Order
|
|
|
|
import Decidable.Decidable
|
|
import Decidable.Equality
|
|
import Data.Fin
|
|
import Data.Fun
|
|
import Data.Rel
|
|
|
|
%hide Prelude.Equal
|
|
|
|
--------------------------------------------------------------------------------
|
|
-- Utility Lemmas
|
|
--------------------------------------------------------------------------------
|
|
|
|
--------------------------------------------------------------------------------
|
|
-- Preorders, Posets, total Orders, Equivalencies, Congruencies
|
|
--------------------------------------------------------------------------------
|
|
|
|
public export
|
|
interface Preorder t po where
|
|
total transitive : (a, b, c : t) -> po a b -> po b c -> po a c
|
|
total reflexive : (a : t) -> po a a
|
|
|
|
public export
|
|
interface (Preorder t po) => Poset t po where
|
|
total antisymmetric : (a, b : t) -> po a b -> po b a -> a = b
|
|
|
|
public export
|
|
interface (Poset t to) => Ordered t to where
|
|
total order : (a, b : t) -> Either (to a b) (to b a)
|
|
|
|
public export
|
|
interface (Preorder t eq) => Equivalence t eq where
|
|
total symmetric : (a, b : t) -> eq a b -> eq b a
|
|
|
|
public export
|
|
interface (Equivalence t eq) => Congruence t f eq where
|
|
total congruent : (a, b : t) -> eq a b -> eq (f a) (f b)
|
|
|
|
public export
|
|
minimum : (Ordered t to) => t -> t -> t
|
|
minimum {to} x y with (order {to} x y)
|
|
minimum {to} x y | Left _ = x
|
|
minimum {to} x y | Right _ = y
|
|
|
|
public export
|
|
maximum : (Ordered t to) => t -> t -> t
|
|
maximum {to} x y with (order {to} x y)
|
|
maximum {to} x y | Left _ = y
|
|
maximum {to} x y | Right _ = x
|
|
|
|
--------------------------------------------------------------------------------
|
|
-- Syntactic equivalence (=)
|
|
--------------------------------------------------------------------------------
|
|
|
|
public export
|
|
implementation Preorder t Equal where
|
|
transitive a b c l r = trans l r
|
|
reflexive a = Refl
|
|
|
|
public export
|
|
implementation Equivalence t Equal where
|
|
symmetric a b prf = sym prf
|
|
|
|
public export
|
|
implementation Congruence t f Equal where
|
|
congruent a b eq = cong f eq
|