Idris2/libs/base/Decidable/Equality.idr
Ohad Kammar 915b7bea38 Add various instances from stdlib interfaces (Eq, Ord, DecEq)
For Void and Either

This is because I ended up using them elsewhere, so why not include them in the stdlib.

Also expose left/rightInjective functions, as are used in the DecEq proofs.
2020-07-26 10:47:38 +01:00

197 lines
7.2 KiB
Idris

module Decidable.Equality
import Data.Maybe
import Data.Either
import Data.Nat
import Data.List
%default total
--------------------------------------------------------------------------------
-- Decidable equality
--------------------------------------------------------------------------------
||| Decision procedures for propositional equality
public export
interface DecEq t where
||| Decide whether two elements of `t` are propositionally equal
decEq : (x1 : t) -> (x2 : t) -> Dec (x1 = x2)
--------------------------------------------------------------------------------
-- Utility lemmas
--------------------------------------------------------------------------------
||| The negation of equality is symmetric (follows from symmetry of equality)
export
negEqSym : forall a, b . (a = b -> Void) -> (b = a -> Void)
negEqSym p h = p (sym h)
||| Everything is decidably equal to itself
export
decEqSelfIsYes : DecEq a => {x : a} -> decEq x x = Yes Refl
decEqSelfIsYes {x} with (decEq x x)
decEqSelfIsYes {x} | Yes Refl = Refl
decEqSelfIsYes {x} | No contra = absurd $ contra Refl
--------------------------------------------------------------------------------
--- Unit
--------------------------------------------------------------------------------
export
DecEq () where
decEq () () = Yes Refl
--------------------------------------------------------------------------------
-- Booleans
--------------------------------------------------------------------------------
export
DecEq Bool where
decEq True True = Yes Refl
decEq False False = Yes Refl
decEq False True = No absurd
decEq True False = No absurd
--------------------------------------------------------------------------------
-- Nat
--------------------------------------------------------------------------------
export
DecEq Nat where
decEq Z Z = Yes Refl
decEq Z (S _) = No absurd
decEq (S _) Z = No absurd
decEq (S n) (S m) with (decEq n m)
decEq (S n) (S m) | Yes p = Yes $ cong S p
decEq (S n) (S m) | No p = No $ \h : (S n = S m) => p $ succInjective n m h
--------------------------------------------------------------------------------
-- Maybe
--------------------------------------------------------------------------------
export
DecEq t => DecEq (Maybe t) where
decEq Nothing Nothing = Yes Refl
decEq Nothing (Just _) = No absurd
decEq (Just _) Nothing = No absurd
decEq (Just x') (Just y') with (decEq x' y')
decEq (Just x') (Just y') | Yes p = Yes $ cong Just p
decEq (Just x') (Just y') | No p
= No $ \h : Just x' = Just y' => p $ justInjective h
--------------------------------------------------------------------------------
-- Either
--------------------------------------------------------------------------------
Uninhabited (Left x = Right y) where
uninhabited Refl impossible
Uninhabited (Right x = Left y) where
uninhabited Refl impossible
export
(DecEq t, DecEq s) => DecEq (Either t s) where
decEq (Left x) (Left y) with (decEq x y)
decEq (Left x) (Left x) | Yes Refl = Yes Refl
decEq (Left x) (Left y) | No contra = No (contra . leftInjective)
decEq (Left x) (Right y) = No absurd
decEq (Right x) (Left y) = No absurd
decEq (Right x) (Right y) with (decEq x y)
decEq (Right x) (Right x) | Yes Refl = Yes Refl
decEq (Right x) (Right y) | No contra = No (contra . rightInjective)
--------------------------------------------------------------------------------
-- Tuple
--------------------------------------------------------------------------------
pairInjective : (a, b) = (c, d) -> (a = c, b = d)
pairInjective Refl = (Refl, Refl)
export
(DecEq a, DecEq b) => DecEq (a, b) where
decEq (a, b) (a', b') with (decEq a a')
decEq (a, b) (a', b') | (No contra) =
No $ contra . fst . pairInjective
decEq (a, b) (a, b') | (Yes Refl) with (decEq b b')
decEq (a, b) (a, b) | (Yes Refl) | (Yes Refl) = Yes Refl
decEq (a, b) (a, b') | (Yes Refl) | (No contra) =
No $ contra . snd . pairInjective
--------------------------------------------------------------------------------
-- List
--------------------------------------------------------------------------------
export
DecEq a => DecEq (List a) where
decEq [] [] = Yes Refl
decEq (x :: xs) [] = No absurd
decEq [] (x :: xs) = No absurd
decEq (x :: xs) (y :: ys) with (decEq x y)
decEq (x :: xs) (y :: ys) | No contra =
No $ contra . fst . consInjective
decEq (x :: xs) (x :: ys) | Yes Refl with (decEq xs ys)
decEq (x :: xs) (x :: xs) | (Yes Refl) | (Yes Refl) = Yes Refl
decEq (x :: xs) (x :: ys) | (Yes Refl) | (No contra) =
No $ contra . snd . consInjective
-- TODO: Other prelude data types
-- For the primitives, we have to cheat because we don't have access to their
-- internal implementations. We use believe_me for the inequality proofs
-- because we don't them to reduce (and they should never be needed anyway...)
-- A postulate would be better, but erasure analysis may think they're needed
-- for computation in a higher order setting.
--------------------------------------------------------------------------------
-- Int
--------------------------------------------------------------------------------
export
implementation DecEq Int where
decEq x y = case x == y of -- Blocks if x or y not concrete
True => Yes primitiveEq
False => No primitiveNotEq
where primitiveEq : forall x, y . x = y
primitiveEq = believe_me (Refl {x})
primitiveNotEq : forall x, y . x = y -> Void
primitiveNotEq prf = believe_me {b = Void} ()
--------------------------------------------------------------------------------
-- Char
--------------------------------------------------------------------------------
export
implementation DecEq Char where
decEq x y = case x == y of -- Blocks if x or y not concrete
True => Yes primitiveEq
False => No primitiveNotEq
where primitiveEq : forall x, y . x = y
primitiveEq = believe_me (Refl {x})
primitiveNotEq : forall x, y . x = y -> Void
primitiveNotEq prf = believe_me {b = Void} ()
--------------------------------------------------------------------------------
-- Integer
--------------------------------------------------------------------------------
export
implementation DecEq Integer where
decEq x y = case x == y of -- Blocks if x or y not concrete
True => Yes primitiveEq
False => No primitiveNotEq
where primitiveEq : forall x, y . x = y
primitiveEq = believe_me (Refl {x})
primitiveNotEq : forall x, y . x = y -> Void
primitiveNotEq prf = believe_me {b = Void} ()
--------------------------------------------------------------------------------
-- String
--------------------------------------------------------------------------------
export
implementation DecEq String where
decEq x y = case x == y of -- Blocks if x or y not concrete
True => Yes primitiveEq
False => No primitiveNotEq
where primitiveEq : forall x, y . x = y
primitiveEq = believe_me (Refl {x})
primitiveNotEq : forall x, y . x = y -> Void
primitiveNotEq prf = believe_me {b = Void} ()