Idris-dev/test/basic010/Main.idr

44 lines
1.2 KiB
Idris
Raw Normal View History

module Main
2014-05-28 21:05:57 +04:00
%default total
-- An expensive function.
qib : Nat -> Nat
2014-05-29 16:40:08 +04:00
qib Z = 1
2014-05-28 21:05:57 +04:00
qib (S Z) = 2
qib (S (S n)) = qib n * qib (S n)
2014-05-28 21:05:57 +04:00
-- An equality whose size reflects the size of numbers.
data equals : Nat -> Nat -> Type where
eqZ : Z `equals` Z
eqS : m `equals` n -> S m `equals` S n
eq_refl : {n : Nat} -> n `equals` n
eq_refl {n = Z} = eqZ
eq_refl {n = S n} = eqS eq_refl
-- Here, the proof is very expensive to compute.
2014-05-29 16:40:08 +04:00
-- We add a recursive argument to prevent Idris from inlining the function.
2014-05-28 21:05:57 +04:00
f : (r, n : Nat) -> Subset Nat (\k => qib n `equals` qib k)
2014-09-25 22:34:35 +04:00
f Z n = Element n eq_refl
2014-05-28 21:05:57 +04:00
f (S r) n = f r n
2014-05-29 16:40:08 +04:00
-- A (contrived) relation, just to have something to show.
data represents : Nat -> Nat -> Type where
axiom : (n : Nat) -> qib n `represents` n
2014-05-28 21:05:57 +04:00
-- Here, the witness is very expensive to compute.
2014-05-29 16:40:08 +04:00
-- We add a recursive argument to prevent Idris from inlining the function.
g : (r, n : Nat) -> Exists (\k : Nat => k `represents` n)
2014-09-25 22:34:35 +04:00
g Z n = Evidence (qib n) (axiom n)
2014-05-28 21:05:57 +04:00
g (S r) n = g r n
2014-05-29 16:40:08 +04:00
fmt : qib n `represents` n -> String
fmt (axiom n) = "axiom " ++ show n
main : IO ()
2014-05-28 21:05:57 +04:00
main = do
n <- map (const (the Nat 10000)) (putStrLn "*oink*")
2014-05-29 16:40:08 +04:00
putStrLn . show $ getWitness (f 4 n)
putStrLn . fmt $ getProof (g 4 n)