Idris-dev/samples/binary.idr

95 lines
2.8 KiB
Idris
Raw Normal View History

module main
2013-01-29 10:47:02 +04:00
data Bit : Nat -> Type where
b0 : Bit 0
b1 : Bit 1
instance Show (Bit n) where
show b0 = "0"
show b1 = "1"
infixl 5 #
2013-01-29 10:47:02 +04:00
data Binary : (width : Nat) -> (value : Nat) -> Type where
2013-07-26 23:05:47 +04:00
zero : Binary Z Z
(#) : Binary w v -> Bit bit -> Binary (S w) (bit + 2 * v)
instance Show (Binary w k) where
show zero = ""
show (bin # bit) = show bin ++ show bit
pattern syntax bitpair [x] [y] = (_ ** (_ ** (x, y, _)))
2014-09-23 11:45:24 +04:00
term syntax bitpair [x] [y] = (_ ** (_ ** (x, y, Refl)))
2013-11-01 17:33:45 +04:00
addBit : Bit x -> Bit y -> Bit c ->
(bx ** (by ** (Bit bx, Bit by, c + x + y = by + 2 * bx)))
addBit b0 b0 b0 = bitpair b0 b0
2013-11-01 17:33:45 +04:00
addBit b0 b0 b1 = bitpair b0 b1
addBit b0 b1 b0 = bitpair b0 b1
addBit b0 b1 b1 = bitpair b1 b0
2013-11-01 17:33:45 +04:00
addBit b1 b0 b0 = bitpair b0 b1
addBit b1 b0 b1 = bitpair b1 b0
addBit b1 b1 b0 = bitpair b1 b0
addBit b1 b1 b1 = bitpair b1 b1
2013-11-01 17:33:45 +04:00
adc : Binary w x -> Binary w y -> Bit c -> Binary (S w) (c + x + y)
adc zero zero carry ?= zero # carry
adc (numx # bx) (numy # by) carry
2013-11-01 17:33:45 +04:00
?= let (bitpair carry0 lsb) = addBit bx by carry in
adc numx numy carry0 # lsb
main : IO ()
main = do let n1 = zero # b1 # b0 # b1 # b0
let n2 = zero # b1 # b1 # b1 # b0
print (adc n1 n2 b0)
---------- Proofs ----------
-- There is almost certainly an easier proof. I don't care, for now :)
main.adc_lemma_2 = proof {
intro c,w,v,bit0,num0;
intro b0,v1,bit1,num1,b1;
intro bc,x,x1,bx,bx1,prf;
intro;
rewrite sym (plusZeroRightNeutral v);
rewrite sym (plusZeroRightNeutral v1);
rewrite sym (plusAssociative (plus c (plus bit0 (plus v v))) bit1 (plus v1 v1));
rewrite (plusAssociative c (plus bit0 (plus v v)) bit1);
rewrite (plusAssociative bit0 (plus v v) bit1);
rewrite sym (plusCommutative (plus v v) bit1);
rewrite sym (plusAssociative c bit0 (plus bit1 (plus v v)));
rewrite sym (plusAssociative (plus c bit0) bit1 (plus v v));
rewrite sym prf;
rewrite sym (plusZeroRightNeutral x);
rewrite plusAssociative x1 (plus x x) (plus v v);
rewrite plusAssociative x x (plus v v);
rewrite sym (plusAssociative x v v);
rewrite plusCommutative v (plus x v);
rewrite sym (plusAssociative x v (plus x v));
rewrite plusAssociative x1 (plus (plus x v) (plus x v)) (plus v1 v1);
rewrite plusAssociative (plus x v) (plus x v) (plus v1 v1);
rewrite plusAssociative x v (plus v1 v1);
rewrite sym (plusAssociative v v1 v1);
rewrite sym (plusAssociative x (plus v v1) v1);
rewrite sym (plusAssociative x v v1);
rewrite sym (plusCommutative (plus (plus x v) v1) v1);
rewrite plusZeroRightNeutral (plus (plus x v) v1);
2013-07-26 23:05:47 +04:00
rewrite sym (plusAssociative (plus x v) v1 (plus (plus (plus x v) v1) Z));
trivial;
}
main.adc_lemma_1 = proof {
intros;
rewrite sym (plusZeroRightNeutral c) ;
trivial;
}