mirror of
https://github.com/ilyakooo0/Idris-dev.git
synced 2024-11-14 03:14:14 +03:00
rename O into Z
This commit is contained in:
parent
c330406ffc
commit
2311d55013
@ -63,7 +63,7 @@ do_memmove dest src dest_offset src_offset size
|
||||
|
||||
private
|
||||
do_peek : Ptr -> Nat -> (size : Nat) -> IO (Vect Bits8 size)
|
||||
do_peek _ _ O = return (Prelude.Vect.Nil)
|
||||
do_peek _ _ Z = return (Prelude.Vect.Nil)
|
||||
do_peek ptr offset (S n)
|
||||
= do b <- mkForeign (FFun "idris_peek" [FPtr, FInt] FByte) ptr (fromInteger $ cast offset)
|
||||
bs <- do_peek ptr (S offset) n
|
||||
|
@ -63,13 +63,13 @@ rebuildEnv (x :: xs) SubNil [] = x :: xs
|
||||
|
||||
-- some proof automation
|
||||
findEffElem : Nat -> List (TTName, Binder TT) -> TT -> Tactic -- Nat is maximum search depth
|
||||
findEffElem O ctxt goal = Refine "Here" `Seq` Solve
|
||||
findEffElem Z ctxt goal = Refine "Here" `Seq` Solve
|
||||
findEffElem (S n) ctxt goal = GoalType "EffElem"
|
||||
(Try (Refine "Here" `Seq` Solve)
|
||||
(Refine "There" `Seq` (Solve `Seq` findEffElem n ctxt goal)))
|
||||
|
||||
findSubList : Nat -> List (TTName, Binder TT) -> TT -> Tactic
|
||||
findSubList O ctxt goal = Refine "SubNil" `Seq` Solve
|
||||
findSubList Z ctxt goal = Refine "SubNil" `Seq` Solve
|
||||
findSubList (S n) ctxt goal
|
||||
= GoalType "SubList"
|
||||
(Try (Refine "subListId" `Seq` Solve)
|
||||
|
@ -4,11 +4,11 @@ module Data.Bits
|
||||
|
||||
divCeil : Nat -> Nat -> Nat
|
||||
divCeil x y = case x `mod` y of
|
||||
O => x `div` y
|
||||
Z => x `div` y
|
||||
S _ => S (x `div` y)
|
||||
|
||||
nextPow2 : Nat -> Nat
|
||||
nextPow2 O = O
|
||||
nextPow2 Z = Z
|
||||
nextPow2 x = if x == (2 `power` l2x)
|
||||
then l2x
|
||||
else S l2x
|
||||
@ -19,9 +19,9 @@ nextBytes : Nat -> Nat
|
||||
nextBytes bits = (nextPow2 (bits `divCeil` 8))
|
||||
|
||||
machineTy : Nat -> Type
|
||||
machineTy O = Bits8
|
||||
machineTy (S O) = Bits16
|
||||
machineTy (S (S O)) = Bits32
|
||||
machineTy Z = Bits8
|
||||
machineTy (S Z) = Bits16
|
||||
machineTy (S (S Z)) = Bits32
|
||||
machineTy (S (S (S _))) = Bits64
|
||||
|
||||
bitsUsed : Nat -> Nat
|
||||
@ -29,19 +29,19 @@ bitsUsed n = 8 * (2 `power` n)
|
||||
|
||||
%assert_total
|
||||
natToBits' : machineTy n -> Nat -> machineTy n
|
||||
natToBits' a O = a
|
||||
natToBits' a Z = a
|
||||
natToBits' {n=n} a x with n
|
||||
-- it seems I have to manually recover the value of n here, instead of being able to reference it
|
||||
natToBits' a (S x') | O = natToBits' {n=0} (prim__addB8 a (prim__truncInt_B8 1)) x'
|
||||
natToBits' a (S x') | S O = natToBits' {n=1} (prim__addB16 a (prim__truncInt_B16 1)) x'
|
||||
natToBits' a (S x') | S (S O) = natToBits' {n=2} (prim__addB32 a (prim__truncInt_B32 1)) x'
|
||||
natToBits' a (S x') | Z = natToBits' {n=0} (prim__addB8 a (prim__truncInt_B8 1)) x'
|
||||
natToBits' a (S x') | S Z = natToBits' {n=1} (prim__addB16 a (prim__truncInt_B16 1)) x'
|
||||
natToBits' a (S x') | S (S Z) = natToBits' {n=2} (prim__addB32 a (prim__truncInt_B32 1)) x'
|
||||
natToBits' a (S x') | S (S (S _)) = natToBits' {n=3} (prim__addB64 a (prim__truncInt_B64 1)) x'
|
||||
|
||||
natToBits : Nat -> machineTy n
|
||||
natToBits {n=n} x with n
|
||||
| O = natToBits' {n=0} (prim__truncInt_B8 0) x
|
||||
| S O = natToBits' {n=1} (prim__truncInt_B16 0) x
|
||||
| S (S O) = natToBits' {n=2} (prim__truncInt_B32 0) x
|
||||
| Z = natToBits' {n=0} (prim__truncInt_B8 0) x
|
||||
| S Z = natToBits' {n=1} (prim__truncInt_B16 0) x
|
||||
| S (S Z) = natToBits' {n=2} (prim__truncInt_B32 0) x
|
||||
| S (S (S _)) = natToBits' {n=3} (prim__truncInt_B64 0) x
|
||||
|
||||
getPad : Nat -> machineTy n
|
||||
@ -94,9 +94,9 @@ pad64' n f x y = prim__lshrB64 (f (prim__shlB64 x pad) y) pad
|
||||
|
||||
shiftLeft' : machineTy (nextBytes n) -> machineTy (nextBytes n) -> machineTy (nextBytes n)
|
||||
shiftLeft' {n=n} x c with (nextBytes n)
|
||||
| O = pad8' n prim__shlB8 x c
|
||||
| S O = pad16' n prim__shlB16 x c
|
||||
| S (S O) = pad32' n prim__shlB32 x c
|
||||
| Z = pad8' n prim__shlB8 x c
|
||||
| S Z = pad16' n prim__shlB16 x c
|
||||
| S (S Z) = pad32' n prim__shlB32 x c
|
||||
| S (S (S _)) = pad64' n prim__shlB64 x c
|
||||
|
||||
public
|
||||
@ -105,9 +105,9 @@ shiftLeft (MkBits x) (MkBits y) = MkBits (shiftLeft' x y)
|
||||
|
||||
shiftRightLogical' : machineTy n -> machineTy n -> machineTy n
|
||||
shiftRightLogical' {n=n} x c with n
|
||||
| O = prim__lshrB8 x c
|
||||
| S O = prim__lshrB16 x c
|
||||
| S (S O) = prim__lshrB32 x c
|
||||
| Z = prim__lshrB8 x c
|
||||
| S Z = prim__lshrB16 x c
|
||||
| S (S Z) = prim__lshrB32 x c
|
||||
| S (S (S _)) = prim__lshrB64 x c
|
||||
|
||||
public
|
||||
@ -117,9 +117,9 @@ shiftRightLogical {n} (MkBits x) (MkBits y)
|
||||
|
||||
shiftRightArithmetic' : machineTy (nextBytes n) -> machineTy (nextBytes n) -> machineTy (nextBytes n)
|
||||
shiftRightArithmetic' {n=n} x c with (nextBytes n)
|
||||
| O = pad8' n prim__ashrB8 x c
|
||||
| S O = pad16' n prim__ashrB16 x c
|
||||
| S (S O) = pad32' n prim__ashrB32 x c
|
||||
| Z = pad8' n prim__ashrB8 x c
|
||||
| S Z = pad16' n prim__ashrB16 x c
|
||||
| S (S Z) = pad32' n prim__ashrB32 x c
|
||||
| S (S (S _)) = pad64' n prim__ashrB64 x c
|
||||
|
||||
public
|
||||
@ -128,9 +128,9 @@ shiftRightArithmetic (MkBits x) (MkBits y) = MkBits (shiftRightArithmetic' x y)
|
||||
|
||||
and' : machineTy n -> machineTy n -> machineTy n
|
||||
and' {n=n} x y with n
|
||||
| O = prim__andB8 x y
|
||||
| S O = prim__andB16 x y
|
||||
| S (S O) = prim__andB32 x y
|
||||
| Z = prim__andB8 x y
|
||||
| S Z = prim__andB16 x y
|
||||
| S (S Z) = prim__andB32 x y
|
||||
| S (S (S _)) = prim__andB64 x y
|
||||
|
||||
public
|
||||
@ -139,9 +139,9 @@ and {n} (MkBits x) (MkBits y) = MkBits (and' {n=nextBytes n} x y)
|
||||
|
||||
or' : machineTy n -> machineTy n -> machineTy n
|
||||
or' {n=n} x y with n
|
||||
| O = prim__orB8 x y
|
||||
| S O = prim__orB16 x y
|
||||
| S (S O) = prim__orB32 x y
|
||||
| Z = prim__orB8 x y
|
||||
| S Z = prim__orB16 x y
|
||||
| S (S Z) = prim__orB32 x y
|
||||
| S (S (S _)) = prim__orB64 x y
|
||||
|
||||
public
|
||||
@ -150,9 +150,9 @@ or {n} (MkBits x) (MkBits y) = MkBits (or' {n=nextBytes n} x y)
|
||||
|
||||
xor' : machineTy n -> machineTy n -> machineTy n
|
||||
xor' {n=n} x y with n
|
||||
| O = prim__xorB8 x y
|
||||
| S O = prim__xorB16 x y
|
||||
| S (S O) = prim__xorB32 x y
|
||||
| Z = prim__xorB8 x y
|
||||
| S Z = prim__xorB16 x y
|
||||
| S (S Z) = prim__xorB32 x y
|
||||
| S (S (S _)) = prim__xorB64 x y
|
||||
|
||||
public
|
||||
@ -161,9 +161,9 @@ xor {n} (MkBits x) (MkBits y) = MkBits {n} (xor' {n=nextBytes n} x y)
|
||||
|
||||
plus' : machineTy (nextBytes n) -> machineTy (nextBytes n) -> machineTy (nextBytes n)
|
||||
plus' {n=n} x y with (nextBytes n)
|
||||
| O = pad8 n prim__addB8 x y
|
||||
| S O = pad16 n prim__addB16 x y
|
||||
| S (S O) = pad32 n prim__addB32 x y
|
||||
| Z = pad8 n prim__addB8 x y
|
||||
| S Z = pad16 n prim__addB16 x y
|
||||
| S (S Z) = pad32 n prim__addB32 x y
|
||||
| S (S (S _)) = pad64 n prim__addB64 x y
|
||||
|
||||
public
|
||||
@ -172,9 +172,9 @@ plus (MkBits x) (MkBits y) = MkBits (plus' x y)
|
||||
|
||||
minus' : machineTy (nextBytes n) -> machineTy (nextBytes n) -> machineTy (nextBytes n)
|
||||
minus' {n=n} x y with (nextBytes n)
|
||||
| O = pad8 n prim__subB8 x y
|
||||
| S O = pad16 n prim__subB16 x y
|
||||
| S (S O) = pad32 n prim__subB32 x y
|
||||
| Z = pad8 n prim__subB8 x y
|
||||
| S Z = pad16 n prim__subB16 x y
|
||||
| S (S Z) = pad32 n prim__subB32 x y
|
||||
| S (S (S _)) = pad64 n prim__subB64 x y
|
||||
|
||||
public
|
||||
@ -183,9 +183,9 @@ minus (MkBits x) (MkBits y) = MkBits (minus' x y)
|
||||
|
||||
times' : machineTy (nextBytes n) -> machineTy (nextBytes n) -> machineTy (nextBytes n)
|
||||
times' {n=n} x y with (nextBytes n)
|
||||
| O = pad8 n prim__mulB8 x y
|
||||
| S O = pad16 n prim__mulB16 x y
|
||||
| S (S O) = pad32 n prim__mulB32 x y
|
||||
| Z = pad8 n prim__mulB8 x y
|
||||
| S Z = pad16 n prim__mulB16 x y
|
||||
| S (S Z) = pad32 n prim__mulB32 x y
|
||||
| S (S (S _)) = pad64 n prim__mulB64 x y
|
||||
|
||||
public
|
||||
@ -195,9 +195,9 @@ times (MkBits x) (MkBits y) = MkBits (times' x y)
|
||||
partial
|
||||
sdiv' : machineTy (nextBytes n) -> machineTy (nextBytes n) -> machineTy (nextBytes n)
|
||||
sdiv' {n=n} x y with (nextBytes n)
|
||||
| O = prim__sdivB8 x y
|
||||
| S O = prim__sdivB16 x y
|
||||
| S (S O) = prim__sdivB32 x y
|
||||
| Z = prim__sdivB8 x y
|
||||
| S Z = prim__sdivB16 x y
|
||||
| S (S Z) = prim__sdivB32 x y
|
||||
| S (S (S _)) = prim__sdivB64 x y
|
||||
|
||||
public partial
|
||||
@ -207,9 +207,9 @@ sdiv (MkBits x) (MkBits y) = MkBits (sdiv' x y)
|
||||
partial
|
||||
udiv' : machineTy (nextBytes n) -> machineTy (nextBytes n) -> machineTy (nextBytes n)
|
||||
udiv' {n=n} x y with (nextBytes n)
|
||||
| O = prim__udivB8 x y
|
||||
| S O = prim__udivB16 x y
|
||||
| S (S O) = prim__udivB32 x y
|
||||
| Z = prim__udivB8 x y
|
||||
| S Z = prim__udivB16 x y
|
||||
| S (S Z) = prim__udivB32 x y
|
||||
| S (S (S _)) = prim__udivB64 x y
|
||||
|
||||
public partial
|
||||
@ -219,9 +219,9 @@ udiv (MkBits x) (MkBits y) = MkBits (udiv' x y)
|
||||
partial
|
||||
srem' : machineTy (nextBytes n) -> machineTy (nextBytes n) -> machineTy (nextBytes n)
|
||||
srem' {n=n} x y with (nextBytes n)
|
||||
| O = prim__sremB8 x y
|
||||
| S O = prim__sremB16 x y
|
||||
| S (S O) = prim__sremB32 x y
|
||||
| Z = prim__sremB8 x y
|
||||
| S Z = prim__sremB16 x y
|
||||
| S (S Z) = prim__sremB32 x y
|
||||
| S (S (S _)) = prim__sremB64 x y
|
||||
|
||||
public partial
|
||||
@ -231,9 +231,9 @@ srem (MkBits x) (MkBits y) = MkBits (srem' x y)
|
||||
partial
|
||||
urem' : machineTy (nextBytes n) -> machineTy (nextBytes n) -> machineTy (nextBytes n)
|
||||
urem' {n=n} x y with (nextBytes n)
|
||||
| O = prim__uremB8 x y
|
||||
| S O = prim__uremB16 x y
|
||||
| S (S O) = prim__uremB32 x y
|
||||
| Z = prim__uremB8 x y
|
||||
| S Z = prim__uremB16 x y
|
||||
| S (S Z) = prim__uremB32 x y
|
||||
| S (S (S _)) = prim__uremB64 x y
|
||||
|
||||
public partial
|
||||
@ -243,37 +243,37 @@ urem (MkBits x) (MkBits y) = MkBits (urem' x y)
|
||||
-- TODO: Proofy comparisons via postulates
|
||||
lt : machineTy (nextBytes n) -> machineTy (nextBytes n) -> Int
|
||||
lt {n=n} x y with (nextBytes n)
|
||||
| O = prim__ltB8 x y
|
||||
| S O = prim__ltB16 x y
|
||||
| S (S O) = prim__ltB32 x y
|
||||
| Z = prim__ltB8 x y
|
||||
| S Z = prim__ltB16 x y
|
||||
| S (S Z) = prim__ltB32 x y
|
||||
| S (S (S _)) = prim__ltB64 x y
|
||||
|
||||
lte : machineTy (nextBytes n) -> machineTy (nextBytes n) -> Int
|
||||
lte {n=n} x y with (nextBytes n)
|
||||
| O = prim__lteB8 x y
|
||||
| S O = prim__lteB16 x y
|
||||
| S (S O) = prim__lteB32 x y
|
||||
| Z = prim__lteB8 x y
|
||||
| S Z = prim__lteB16 x y
|
||||
| S (S Z) = prim__lteB32 x y
|
||||
| S (S (S _)) = prim__lteB64 x y
|
||||
|
||||
eq : machineTy (nextBytes n) -> machineTy (nextBytes n) -> Int
|
||||
eq {n=n} x y with (nextBytes n)
|
||||
| O = prim__eqB8 x y
|
||||
| S O = prim__eqB16 x y
|
||||
| S (S O) = prim__eqB32 x y
|
||||
| Z = prim__eqB8 x y
|
||||
| S Z = prim__eqB16 x y
|
||||
| S (S Z) = prim__eqB32 x y
|
||||
| S (S (S _)) = prim__eqB64 x y
|
||||
|
||||
gte : machineTy (nextBytes n) -> machineTy (nextBytes n) -> Int
|
||||
gte {n=n} x y with (nextBytes n)
|
||||
| O = prim__gteB8 x y
|
||||
| S O = prim__gteB16 x y
|
||||
| S (S O) = prim__gteB32 x y
|
||||
| Z = prim__gteB8 x y
|
||||
| S Z = prim__gteB16 x y
|
||||
| S (S Z) = prim__gteB32 x y
|
||||
| S (S (S _)) = prim__gteB64 x y
|
||||
|
||||
gt : machineTy (nextBytes n) -> machineTy (nextBytes n) -> Int
|
||||
gt {n=n} x y with (nextBytes n)
|
||||
| O = prim__gtB8 x y
|
||||
| S O = prim__gtB16 x y
|
||||
| S (S O) = prim__gtB32 x y
|
||||
| Z = prim__gtB8 x y
|
||||
| S Z = prim__gtB16 x y
|
||||
| S (S Z) = prim__gtB32 x y
|
||||
| S (S (S _)) = prim__gtB64 x y
|
||||
|
||||
instance Eq (Bits n) where
|
||||
@ -293,11 +293,11 @@ instance Ord (Bits n) where
|
||||
|
||||
complement' : machineTy (nextBytes n) -> machineTy (nextBytes n)
|
||||
complement' {n=n} x with (nextBytes n)
|
||||
| O = let pad = getPad {n=0} n in
|
||||
| Z = let pad = getPad {n=0} n in
|
||||
prim__complB8 (x `prim__shlB8` pad) `prim__lshrB8` pad
|
||||
| S O = let pad = getPad {n=1} n in
|
||||
| S Z = let pad = getPad {n=1} n in
|
||||
prim__complB16 (x `prim__shlB16` pad) `prim__lshrB16` pad
|
||||
| S (S O) = let pad = getPad {n=2} n in
|
||||
| S (S Z) = let pad = getPad {n=2} n in
|
||||
prim__complB32 (x `prim__shlB32` pad) `prim__lshrB32` pad
|
||||
| S (S (S _)) = let pad = getPad {n=3} n in
|
||||
prim__complB64 (x `prim__shlB64` pad) `prim__lshrB64` pad
|
||||
@ -309,15 +309,15 @@ complement (MkBits x) = MkBits (complement' x)
|
||||
-- TODO: Prove
|
||||
zext' : machineTy (nextBytes n) -> machineTy (nextBytes (n+m))
|
||||
zext' {n=n} {m=m} x with (nextBytes n, nextBytes (n+m))
|
||||
| (O, O) = believe_me x
|
||||
| (O, S O) = believe_me (prim__zextB8_B16 (believe_me x))
|
||||
| (O, S (S O)) = believe_me (prim__zextB8_B32 (believe_me x))
|
||||
| (O, S (S (S _))) = believe_me (prim__zextB8_B64 (believe_me x))
|
||||
| (S O, S O) = believe_me x
|
||||
| (S O, S (S O)) = believe_me (prim__zextB16_B32 (believe_me x))
|
||||
| (S O, S (S (S _))) = believe_me (prim__zextB16_B64 (believe_me x))
|
||||
| (S (S O), S (S O)) = believe_me x
|
||||
| (S (S O), S (S (S _))) = believe_me (prim__zextB32_B64 (believe_me x))
|
||||
| (Z, Z) = believe_me x
|
||||
| (Z, S Z) = believe_me (prim__zextB8_B16 (believe_me x))
|
||||
| (Z, S (S Z)) = believe_me (prim__zextB8_B32 (believe_me x))
|
||||
| (Z, S (S (S _))) = believe_me (prim__zextB8_B64 (believe_me x))
|
||||
| (S Z, S Z) = believe_me x
|
||||
| (S Z, S (S Z)) = believe_me (prim__zextB16_B32 (believe_me x))
|
||||
| (S Z, S (S (S _))) = believe_me (prim__zextB16_B64 (believe_me x))
|
||||
| (S (S Z), S (S Z)) = believe_me x
|
||||
| (S (S Z), S (S (S _))) = believe_me (prim__zextB32_B64 (believe_me x))
|
||||
| (S (S (S _)), S (S (S _))) = believe_me x
|
||||
|
||||
public
|
||||
@ -327,11 +327,11 @@ zeroExtend (MkBits x) = MkBits (zext' x)
|
||||
%assert_total
|
||||
intToBits' : Integer -> machineTy (nextBytes n)
|
||||
intToBits' {n=n} x with (nextBytes n)
|
||||
| O = let pad = getPad {n=0} n in
|
||||
| Z = let pad = getPad {n=0} n in
|
||||
prim__lshrB8 (prim__shlB8 (prim__truncBigInt_B8 x) pad) pad
|
||||
| S O = let pad = getPad {n=1} n in
|
||||
| S Z = let pad = getPad {n=1} n in
|
||||
prim__lshrB16 (prim__shlB16 (prim__truncBigInt_B16 x) pad) pad
|
||||
| S (S O) = let pad = getPad {n=2} n in
|
||||
| S (S Z) = let pad = getPad {n=2} n in
|
||||
prim__lshrB32 (prim__shlB32 (prim__truncBigInt_B32 x) pad) pad
|
||||
| S (S (S _)) = let pad = getPad {n=3} n in
|
||||
prim__lshrB64 (prim__shlB64 (prim__truncBigInt_B64 x) pad) pad
|
||||
@ -345,9 +345,9 @@ instance Cast Integer (Bits n) where
|
||||
|
||||
bitsToInt' : machineTy (nextBytes n) -> Integer
|
||||
bitsToInt' {n=n} x with (nextBytes n)
|
||||
| O = prim__zextB8_BigInt x
|
||||
| S O = prim__zextB16_BigInt x
|
||||
| S (S O) = prim__zextB32_BigInt x
|
||||
| Z = prim__zextB8_BigInt x
|
||||
| S Z = prim__zextB16_BigInt x
|
||||
| S (S Z) = prim__zextB32_BigInt x
|
||||
| S (S (S _)) = prim__zextB64_BigInt x
|
||||
|
||||
public
|
||||
@ -364,28 +364,28 @@ bitsToInt (MkBits x) = bitsToInt' x
|
||||
-- TODO: Prove
|
||||
sext' : machineTy (nextBytes n) -> machineTy (nextBytes (n+m))
|
||||
sext' {n=n} {m=m} x with (nextBytes n, nextBytes (n+m))
|
||||
| (O, O) = let pad = getPad {n=0} n in
|
||||
| (Z, Z) = let pad = getPad {n=0} n in
|
||||
believe_me (prim__ashrB8 (prim__shlB8 (believe_me x) pad) pad)
|
||||
| (O, S O) = let pad = getPad {n=0} n in
|
||||
| (Z, S Z) = let pad = getPad {n=0} n in
|
||||
believe_me (prim__ashrB16 (prim__sextB8_B16 (prim__shlB8 (believe_me x) pad))
|
||||
(prim__zextB8_B16 pad))
|
||||
| (O, S (S O)) = let pad = getPad {n=0} n in
|
||||
| (Z, S (S Z)) = let pad = getPad {n=0} n in
|
||||
believe_me (prim__ashrB32 (prim__sextB8_B32 (prim__shlB8 (believe_me x) pad))
|
||||
(prim__zextB8_B32 pad))
|
||||
| (O, S (S (S _))) = let pad = getPad {n=0} n in
|
||||
| (Z, S (S (S _))) = let pad = getPad {n=0} n in
|
||||
believe_me (prim__ashrB64 (prim__sextB8_B64 (prim__shlB8 (believe_me x) pad))
|
||||
(prim__zextB8_B64 pad))
|
||||
| (S O, S O) = let pad = getPad {n=1} n in
|
||||
| (S Z, S Z) = let pad = getPad {n=1} n in
|
||||
believe_me (prim__ashrB16 (prim__shlB16 (believe_me x) pad) pad)
|
||||
| (S O, S (S O)) = let pad = getPad {n=1} n in
|
||||
| (S Z, S (S Z)) = let pad = getPad {n=1} n in
|
||||
believe_me (prim__ashrB32 (prim__sextB16_B32 (prim__shlB16 (believe_me x) pad))
|
||||
(prim__zextB16_B32 pad))
|
||||
| (S O, S (S (S _))) = let pad = getPad {n=1} n in
|
||||
| (S Z, S (S (S _))) = let pad = getPad {n=1} n in
|
||||
believe_me (prim__ashrB64 (prim__sextB16_B64 (prim__shlB16 (believe_me x) pad))
|
||||
(prim__zextB16_B64 pad))
|
||||
| (S (S O), S (S O)) = let pad = getPad {n=2} n in
|
||||
| (S (S Z), S (S Z)) = let pad = getPad {n=2} n in
|
||||
believe_me (prim__ashrB32 (prim__shlB32 (believe_me x) pad) pad)
|
||||
| (S (S O), S (S (S _))) = let pad = getPad {n=2} n in
|
||||
| (S (S Z), S (S (S _))) = let pad = getPad {n=2} n in
|
||||
believe_me (prim__ashrB64 (prim__sextB32_B64 (prim__shlB32 (believe_me x) pad))
|
||||
(prim__zextB32_B64 pad))
|
||||
| (S (S (S _)), S (S (S _))) = let pad = getPad {n=3} n in
|
||||
@ -398,15 +398,15 @@ sext' {n=n} {m=m} x with (nextBytes n, nextBytes (n+m))
|
||||
-- TODO: Prove
|
||||
trunc' : machineTy (nextBytes (n+m)) -> machineTy (nextBytes n)
|
||||
trunc' {n=n} {m=m} x with (nextBytes n, nextBytes (n+m))
|
||||
| (O, O) = believe_me x
|
||||
| (O, S O) = believe_me (prim__truncB16_B8 (believe_me x))
|
||||
| (O, S (S O)) = believe_me (prim__truncB32_B8 (believe_me x))
|
||||
| (O, S (S (S _))) = believe_me (prim__truncB64_B8 (believe_me x))
|
||||
| (S O, S O) = believe_me x
|
||||
| (S O, S (S O)) = believe_me (prim__truncB32_B16 (believe_me x))
|
||||
| (S O, S (S (S _))) = believe_me (prim__truncB64_B16 (believe_me x))
|
||||
| (S (S O), S (S O)) = believe_me x
|
||||
| (S (S O), S (S (S _))) = believe_me (prim__truncB64_B32 (believe_me x))
|
||||
| (Z, Z) = believe_me x
|
||||
| (Z, S Z) = believe_me (prim__truncB16_B8 (believe_me x))
|
||||
| (Z, S (S Z)) = believe_me (prim__truncB32_B8 (believe_me x))
|
||||
| (Z, S (S (S _))) = believe_me (prim__truncB64_B8 (believe_me x))
|
||||
| (S Z, S Z) = believe_me x
|
||||
| (S Z, S (S Z)) = believe_me (prim__truncB32_B16 (believe_me x))
|
||||
| (S Z, S (S (S _))) = believe_me (prim__truncB64_B16 (believe_me x))
|
||||
| (S (S Z), S (S Z)) = believe_me x
|
||||
| (S (S Z), S (S (S _))) = believe_me (prim__truncB64_B32 (believe_me x))
|
||||
| (S (S (S _)), S (S (S _))) = believe_me x
|
||||
|
||||
--public
|
||||
|
@ -34,7 +34,7 @@ weaken (x :: xs) = x :: weaken xs
|
||||
|
||||
take : (n : Nat) -> List a -> BoundedList a n
|
||||
take _ [] = []
|
||||
take O _ = []
|
||||
take Z _ = []
|
||||
take (S n') (x :: xs) = x :: take n' xs
|
||||
|
||||
toList : BoundedList a n -> List a
|
||||
@ -50,7 +50,7 @@ fromList (x :: xs) = x :: fromList xs
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
replicate : (n : Nat) -> a -> BoundedList a n
|
||||
replicate O _ = []
|
||||
replicate Z _ = []
|
||||
replicate (S n) x = x :: replicate n x
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
@ -79,7 +79,7 @@ map f (x :: xs) = f x :: map f xs
|
||||
|
||||
%assert_total -- not sure why this isn't accepted - clearly decreasing on n
|
||||
pad : (xs : BoundedList a n) -> (padding : a) -> BoundedList a n
|
||||
pad {n=O} [] _ = []
|
||||
pad {n=Z} [] _ = []
|
||||
pad {n=S n'} [] padding = padding :: (pad {n=n'} [] padding)
|
||||
pad {n=S n'} (x :: xs) padding = x :: pad {n=n'} xs padding
|
||||
|
||||
|
@ -40,7 +40,7 @@ using (k : Nat, ts : Vect Type k)
|
||||
class Shows (k : Nat) (ts : Vect Type k) where
|
||||
shows : HVect ts -> Vect String k
|
||||
|
||||
instance Shows O [] where
|
||||
instance Shows Z [] where
|
||||
shows [] = []
|
||||
|
||||
instance (Show t, Shows k ts) => Shows (S k) (t::ts) where
|
||||
|
@ -3,7 +3,7 @@ module Data.SortedMap
|
||||
-- TODO: write merge and split
|
||||
|
||||
data Tree : Nat -> Type -> Type -> Type where
|
||||
Leaf : k -> v -> Tree O k v
|
||||
Leaf : k -> v -> Tree Z k v
|
||||
Branch2 : Tree n k v -> k -> Tree n k v -> Tree (S n) k v
|
||||
Branch3 : Tree n k v -> k -> Tree n k v -> k -> Tree n k v -> Tree (S n) k v
|
||||
|
||||
@ -123,7 +123,7 @@ treeInsert k v t =
|
||||
Right (a, b, c) => Right (Branch2 a b c)
|
||||
|
||||
delType : Nat -> Type -> Type -> Type
|
||||
delType O k v = ()
|
||||
delType Z k v = ()
|
||||
delType (S n) k v = Tree n k v
|
||||
|
||||
treeDelete : Ord k => k -> Tree n k v -> Either (Tree n k v) (delType n k v)
|
||||
@ -132,7 +132,7 @@ treeDelete k (Leaf k' v) =
|
||||
Right ()
|
||||
else
|
||||
Left (Leaf k' v)
|
||||
treeDelete {n=S O} k (Branch2 t1 k' t2) =
|
||||
treeDelete {n=S Z} k (Branch2 t1 k' t2) =
|
||||
if k <= k' then
|
||||
case treeDelete k t1 of
|
||||
Left t1' => Left (Branch2 t1' k' t2)
|
||||
@ -141,7 +141,7 @@ treeDelete {n=S O} k (Branch2 t1 k' t2) =
|
||||
case treeDelete k t2 of
|
||||
Left t2' => Left (Branch2 t1 k' t2')
|
||||
Right () => Right t1
|
||||
treeDelete {n=S O} k (Branch3 t1 k1 t2 k2 t3) =
|
||||
treeDelete {n=S Z} k (Branch3 t1 k1 t2 k2 t3) =
|
||||
if k <= k1 then
|
||||
case treeDelete k t1 of
|
||||
Left t1' => Left (Branch3 t1' k1 t2 k2 t3)
|
||||
@ -201,7 +201,7 @@ lookup _ Empty = Nothing
|
||||
lookup k (M _ t) = treeLookup k t
|
||||
|
||||
insert : Ord k => k -> v -> SortedMap k v -> SortedMap k v
|
||||
insert k v Empty = M O (Leaf k v)
|
||||
insert k v Empty = M Z (Leaf k v)
|
||||
insert k v (M _ t) =
|
||||
case treeInsert k v t of
|
||||
Left t' => (M _ t')
|
||||
@ -209,7 +209,7 @@ insert k v (M _ t) =
|
||||
|
||||
delete : Ord k => k -> SortedMap k v -> SortedMap k v
|
||||
delete _ Empty = Empty
|
||||
delete k (M O t) =
|
||||
delete k (M Z t) =
|
||||
case treeDelete k t of
|
||||
Left t' => (M _ t')
|
||||
Right () => Empty
|
||||
|
@ -14,7 +14,7 @@ data Elem : a -> Vect a k -> Type where
|
||||
There : {xs : Vect a k} -> Elem x xs -> Elem x (y::xs)
|
||||
|
||||
findElem : Nat -> List (TTName, Binder TT) -> TT -> Tactic
|
||||
findElem O ctxt goal = Refine "Here" `Seq` Solve
|
||||
findElem Z ctxt goal = Refine "Here" `Seq` Solve
|
||||
findElem (S n) ctxt goal = GoalType "Elem" (Try (Refine "Here" `Seq` Solve) (Refine "There" `Seq` (Solve `Seq` findElem n ctxt goal)))
|
||||
|
||||
replaceElem : (xs : Vect t k) -> Elem x xs -> (y : t) -> (ys : Vect t k ** Elem y ys)
|
||||
|
@ -24,17 +24,17 @@ instance Show ZZ where
|
||||
show (NegS n) = "-" ++ show (S n)
|
||||
|
||||
negZ : ZZ -> ZZ
|
||||
negZ (Pos O) = Pos O
|
||||
negZ (Pos Z) = Pos Z
|
||||
negZ (Pos (S n)) = NegS n
|
||||
negZ (NegS n) = Pos (S n)
|
||||
|
||||
negNat : Nat -> ZZ
|
||||
negNat O = Pos O
|
||||
negNat Z = Pos Z
|
||||
negNat (S n) = NegS n
|
||||
|
||||
minusNatZ : Nat -> Nat -> ZZ
|
||||
minusNatZ n O = Pos n
|
||||
minusNatZ O (S m) = NegS m
|
||||
minusNatZ n Z = Pos n
|
||||
minusNatZ Z (S m) = NegS m
|
||||
minusNatZ (S n) (S m) = minusNatZ n m
|
||||
|
||||
plusZ : ZZ -> ZZ -> ZZ
|
||||
@ -101,9 +101,9 @@ natMultZMult : (n : Nat) -> (m : Nat) -> (x : Nat)
|
||||
natMultZMult n m x h = cong h
|
||||
|
||||
doubleNegElim : (z : ZZ) -> negZ (negZ z) = z
|
||||
doubleNegElim (Pos O) = refl
|
||||
doubleNegElim (Pos Z) = refl
|
||||
doubleNegElim (Pos (S n)) = refl
|
||||
doubleNegElim (NegS O) = refl
|
||||
doubleNegElim (NegS Z) = refl
|
||||
doubleNegElim (NegS (S n)) = refl
|
||||
|
||||
-- Injectivity
|
||||
|
@ -41,13 +41,13 @@ instance DecEq Bool where
|
||||
-- Nat
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
total OnotS : O = S n -> _|_
|
||||
total OnotS : Z = S n -> _|_
|
||||
OnotS refl impossible
|
||||
|
||||
instance DecEq Nat where
|
||||
decEq O O = Yes refl
|
||||
decEq O (S _) = No OnotS
|
||||
decEq (S _) O = No (negEqSym OnotS)
|
||||
decEq Z Z = Yes refl
|
||||
decEq Z (S _) = No OnotS
|
||||
decEq (S _) Z = No (negEqSym OnotS)
|
||||
decEq (S n) (S m) with (decEq n m)
|
||||
| Yes p = Yes $ cong p
|
||||
| No p = No $ \h : (S n = S m) => p $ succInjective n m h
|
||||
|
@ -55,7 +55,7 @@ NatLTEIsAntisymmetric n m (nLTESm _) (nLTESm _) impossible
|
||||
instance Poset Nat NatLTE where
|
||||
antisymmetric = NatLTEIsAntisymmetric
|
||||
|
||||
total zeroNeverGreater : {n : Nat} -> NatLTE (S n) O -> _|_
|
||||
total zeroNeverGreater : {n : Nat} -> NatLTE (S n) Z -> _|_
|
||||
zeroNeverGreater {n} (nLTESm _) impossible
|
||||
zeroNeverGreater {n} nEqn impossible
|
||||
|
||||
@ -66,8 +66,8 @@ nGTSm {n} {m} disprf (nEqn) impossible
|
||||
|
||||
total
|
||||
decideNatLTE : (n : Nat) -> (m : Nat) -> Dec (NatLTE n m)
|
||||
decideNatLTE O O = Yes nEqn
|
||||
decideNatLTE (S x) O = No zeroNeverGreater
|
||||
decideNatLTE Z Z = Yes nEqn
|
||||
decideNatLTE (S x) Z = No zeroNeverGreater
|
||||
decideNatLTE x (S y) with (decEq x (S y))
|
||||
| Yes eq = rewrite eq in Yes nEqn
|
||||
| No _ with (decideNatLTE x y)
|
||||
|
@ -251,7 +251,7 @@ instance Monad List where
|
||||
%lib C "m"
|
||||
|
||||
pow : (Num a) => a -> Nat -> a
|
||||
pow x O = 1
|
||||
pow x Z = 1
|
||||
pow x (S n) = x * (pow x n)
|
||||
|
||||
exp : Float -> Float
|
||||
|
@ -17,7 +17,7 @@ finToNat fO a = a
|
||||
finToNat (fS x) a = finToNat x (S a)
|
||||
|
||||
instance Cast (Fin n) Nat where
|
||||
cast x = finToNat x O
|
||||
cast x = finToNat x Z
|
||||
|
||||
finToInt : Fin n -> Integer -> Integer
|
||||
finToInt fO a = a
|
||||
@ -38,7 +38,7 @@ strengthen {n = S k} (fS i) with (strengthen i)
|
||||
strengthen f = Left f
|
||||
|
||||
last : Fin (S n)
|
||||
last {n=O} = fO
|
||||
last {n=Z} = fO
|
||||
last {n=S _} = fS last
|
||||
|
||||
total fSinjective : {f : Fin n} -> {f' : Fin n} -> (fS f = fS f') -> f = f'
|
||||
@ -48,7 +48,7 @@ fSinjective refl = refl
|
||||
-- Construct a Fin from an integer literal which must fit in the given Fin
|
||||
|
||||
natToFin : Nat -> (n : Nat) -> Maybe (Fin n)
|
||||
natToFin O (S j) = Just fO
|
||||
natToFin Z (S j) = Just fO
|
||||
natToFin (S k) (S j) with (natToFin k j)
|
||||
| Just k' = Just (fS k')
|
||||
| Nothing = Nothing
|
||||
|
@ -27,7 +27,7 @@ isEmpty Empty = True
|
||||
isEmpty _ = False
|
||||
|
||||
total size : MaxiphobicHeap a -> Nat
|
||||
size Empty = O
|
||||
size Empty = Z
|
||||
size (Node s l e r) = s
|
||||
|
||||
isValidHeap : Ord a => MaxiphobicHeap a -> Bool
|
||||
@ -148,7 +148,7 @@ absurdBoolDischarge p = replace {P = disjointTy} p ()
|
||||
disjointTy False = ()
|
||||
disjointTy True = _|_
|
||||
|
||||
total isEmptySizeZero : (h : MaxiphobicHeap a) -> (isEmpty h = True) -> size h = O
|
||||
total isEmptySizeZero : (h : MaxiphobicHeap a) -> (isEmpty h = True) -> size h = Z
|
||||
isEmptySizeZero Empty p = refl
|
||||
isEmptySizeZero (Node s l e r) p = ?isEmptySizeZeroNodeAbsurd
|
||||
|
||||
|
@ -85,12 +85,12 @@ init' (x::xs) =
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
take : Nat -> List a -> List a
|
||||
take O xs = []
|
||||
take Z xs = []
|
||||
take (S n) [] = []
|
||||
take (S n) (x::xs) = x :: take n xs
|
||||
|
||||
drop : Nat -> List a -> List a
|
||||
drop O xs = xs
|
||||
drop Z xs = xs
|
||||
drop (S n) [] = []
|
||||
drop (S n) (x::xs) = drop n xs
|
||||
|
||||
@ -127,7 +127,7 @@ repeat : a -> List a
|
||||
repeat x = x :: lazy (repeat x)
|
||||
|
||||
replicate : Nat -> a -> List a
|
||||
replicate O x = []
|
||||
replicate Z x = []
|
||||
replicate (S n) x = x :: replicate n x
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
@ -325,7 +325,7 @@ find p (x::xs) =
|
||||
find p xs
|
||||
|
||||
findIndex : (a -> Bool) -> List a -> Maybe Nat
|
||||
findIndex = findIndex' O
|
||||
findIndex = findIndex' Z
|
||||
where
|
||||
-- findIndex' : Nat -> (a -> Bool) -> List a -> Maybe Nat
|
||||
findIndex' cnt p [] = Nothing
|
||||
@ -336,7 +336,7 @@ findIndex = findIndex' O
|
||||
findIndex' (S cnt) p xs
|
||||
|
||||
findIndices : (a -> Bool) -> List a -> List Nat
|
||||
findIndices = findIndices' O
|
||||
findIndices = findIndices' Z
|
||||
where
|
||||
-- findIndices' : Nat -> (a -> Bool) -> List a -> List Nat
|
||||
findIndices' cnt p [] = []
|
||||
|
@ -9,7 +9,7 @@ import Prelude.Cast
|
||||
%default total
|
||||
|
||||
data Nat
|
||||
= O
|
||||
= Z
|
||||
| S Nat
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
@ -17,11 +17,11 @@ data Nat
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
total isZero : Nat -> Bool
|
||||
isZero O = True
|
||||
isZero Z = True
|
||||
isZero (S n) = False
|
||||
|
||||
total isSucc : Nat -> Bool
|
||||
isSucc O = False
|
||||
isSucc Z = False
|
||||
isSucc (S n) = True
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
@ -29,27 +29,27 @@ isSucc (S n) = True
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
total plus : Nat -> Nat -> Nat
|
||||
plus O right = right
|
||||
plus Z right = right
|
||||
plus (S left) right = S (plus left right)
|
||||
|
||||
total mult : Nat -> Nat -> Nat
|
||||
mult O right = O
|
||||
mult Z right = Z
|
||||
mult (S left) right = plus right $ mult left right
|
||||
|
||||
total minus : Nat -> Nat -> Nat
|
||||
minus O right = O
|
||||
minus left O = left
|
||||
minus Z right = Z
|
||||
minus left Z = left
|
||||
minus (S left) (S right) = minus left right
|
||||
|
||||
total power : Nat -> Nat -> Nat
|
||||
power base O = S O
|
||||
power base Z = S Z
|
||||
power base (S exp) = mult base $ power base exp
|
||||
|
||||
hyper : Nat -> Nat -> Nat -> Nat
|
||||
hyper O a b = S b
|
||||
hyper (S O) a O = a
|
||||
hyper (S(S O)) a O = O
|
||||
hyper n a O = S O
|
||||
hyper Z a b = S b
|
||||
hyper (S Z) a Z = a
|
||||
hyper (S(S Z)) a Z = Z
|
||||
hyper n a Z = S Z
|
||||
hyper (S pn) a (S pb) = hyper pn a (hyper (S pn) a pb)
|
||||
|
||||
|
||||
@ -58,7 +58,7 @@ hyper (S pn) a (S pb) = hyper pn a (hyper (S pn) a pb)
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
data LTE : Nat -> Nat -> Type where
|
||||
lteZero : LTE O right
|
||||
lteZero : LTE Z right
|
||||
lteSucc : LTE left right -> LTE (S left) (S right)
|
||||
|
||||
total GTE : Nat -> Nat -> Type
|
||||
@ -71,8 +71,8 @@ total GT : Nat -> Nat -> Type
|
||||
GT left right = LT right left
|
||||
|
||||
total lte : Nat -> Nat -> Bool
|
||||
lte O right = True
|
||||
lte left O = False
|
||||
lte Z right = True
|
||||
lte left Z = False
|
||||
lte (S left) (S right) = lte left right
|
||||
|
||||
total gte : Nat -> Nat -> Bool
|
||||
@ -103,18 +103,18 @@ maximum left right =
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
instance Eq Nat where
|
||||
O == O = True
|
||||
Z == Z = True
|
||||
(S l) == (S r) = l == r
|
||||
_ == _ = False
|
||||
|
||||
instance Cast Nat Integer where
|
||||
cast O = 0
|
||||
cast Z = 0
|
||||
cast (S k) = 1 + cast k
|
||||
|
||||
instance Ord Nat where
|
||||
compare O O = EQ
|
||||
compare O (S k) = LT
|
||||
compare (S k) O = GT
|
||||
compare Z Z = EQ
|
||||
compare Z (S k) = LT
|
||||
compare (S k) Z = GT
|
||||
compare (S x) (S y) = compare x y
|
||||
|
||||
instance Num Nat where
|
||||
@ -128,12 +128,12 @@ instance Num Nat where
|
||||
where
|
||||
%assert_total
|
||||
fromInteger' : Integer -> Nat
|
||||
fromInteger' 0 = O
|
||||
fromInteger' 0 = Z
|
||||
fromInteger' n =
|
||||
if (n > 0) then
|
||||
S (fromInteger' (n - 1))
|
||||
else
|
||||
O
|
||||
Z
|
||||
|
||||
instance Cast Integer Nat where
|
||||
cast = fromInteger
|
||||
@ -171,10 +171,10 @@ instance Semigroup Additive where
|
||||
getAdditive m => m
|
||||
|
||||
instance Monoid Multiplicative where
|
||||
neutral = getMultiplicative $ S O
|
||||
neutral = getMultiplicative $ S Z
|
||||
|
||||
instance Monoid Additive where
|
||||
neutral = getAdditive O
|
||||
neutral = getAdditive Z
|
||||
|
||||
instance MeetSemilattice Nat where
|
||||
meet = minimum
|
||||
@ -185,14 +185,14 @@ instance JoinSemilattice Nat where
|
||||
instance Lattice Nat where { }
|
||||
|
||||
instance BoundedJoinSemilattice Nat where
|
||||
bottom = O
|
||||
bottom = Z
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
-- Auxilliary notions
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
total pred : Nat -> Nat
|
||||
pred O = O
|
||||
pred Z = Z
|
||||
pred (S n) = n
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
@ -200,8 +200,8 @@ pred (S n) = n
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
total fib : Nat -> Nat
|
||||
fib O = O
|
||||
fib (S O) = S O
|
||||
fib Z = Z
|
||||
fib (S Z) = S Z
|
||||
fib (S (S n)) = fib (S n) + fib n
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
@ -213,11 +213,11 @@ fib (S (S n)) = fib (S n) + fib n
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
total mod : Nat -> Nat -> Nat
|
||||
mod left O = left
|
||||
mod left Z = left
|
||||
mod left (S right) = mod' left left right
|
||||
where
|
||||
total mod' : Nat -> Nat -> Nat -> Nat
|
||||
mod' O centre right = centre
|
||||
mod' Z centre right = centre
|
||||
mod' (S left) centre right =
|
||||
if lte centre right then
|
||||
centre
|
||||
@ -225,21 +225,21 @@ mod left (S right) = mod' left left right
|
||||
mod' left (centre - (S right)) right
|
||||
|
||||
total div : Nat -> Nat -> Nat
|
||||
div left O = S left -- div by zero
|
||||
div left Z = S left -- div by zero
|
||||
div left (S right) = div' left left right
|
||||
where
|
||||
total div' : Nat -> Nat -> Nat -> Nat
|
||||
div' O centre right = O
|
||||
div' Z centre right = Z
|
||||
div' (S left) centre right =
|
||||
if lte centre right then
|
||||
O
|
||||
Z
|
||||
else
|
||||
S (div' left (centre - (S right)) right)
|
||||
|
||||
%assert_total
|
||||
log2 : Nat -> Nat
|
||||
log2 O = O
|
||||
log2 (S O) = O
|
||||
log2 Z = Z
|
||||
log2 (S Z) = Z
|
||||
log2 n = S (log2 (n `div` 2))
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
@ -260,28 +260,28 @@ total plusZeroLeftNeutral : (right : Nat) -> 0 + right = right
|
||||
plusZeroLeftNeutral right = refl
|
||||
|
||||
total plusZeroRightNeutral : (left : Nat) -> left + 0 = left
|
||||
plusZeroRightNeutral O = refl
|
||||
plusZeroRightNeutral Z = refl
|
||||
plusZeroRightNeutral (S n) =
|
||||
let inductiveHypothesis = plusZeroRightNeutral n in
|
||||
?plusZeroRightNeutralStepCase
|
||||
|
||||
total plusSuccRightSucc : (left : Nat) -> (right : Nat) ->
|
||||
S (left + right) = left + (S right)
|
||||
plusSuccRightSucc O right = refl
|
||||
plusSuccRightSucc Z right = refl
|
||||
plusSuccRightSucc (S left) right =
|
||||
let inductiveHypothesis = plusSuccRightSucc left right in
|
||||
?plusSuccRightSuccStepCase
|
||||
|
||||
total plusCommutative : (left : Nat) -> (right : Nat) ->
|
||||
left + right = right + left
|
||||
plusCommutative O right = ?plusCommutativeBaseCase
|
||||
plusCommutative Z right = ?plusCommutativeBaseCase
|
||||
plusCommutative (S left) right =
|
||||
let inductiveHypothesis = plusCommutative left right in
|
||||
?plusCommutativeStepCase
|
||||
|
||||
total plusAssociative : (left : Nat) -> (centre : Nat) -> (right : Nat) ->
|
||||
left + (centre + right) = (left + centre) + right
|
||||
plusAssociative O centre right = refl
|
||||
plusAssociative Z centre right = refl
|
||||
plusAssociative (S left) centre right =
|
||||
let inductiveHypothesis = plusAssociative left centre right in
|
||||
?plusAssociativeStepCase
|
||||
@ -299,38 +299,38 @@ plusOneSucc n = refl
|
||||
|
||||
total plusLeftCancel : (left : Nat) -> (right : Nat) -> (right' : Nat) ->
|
||||
(p : left + right = left + right') -> right = right'
|
||||
plusLeftCancel O right right' p = ?plusLeftCancelBaseCase
|
||||
plusLeftCancel Z right right' p = ?plusLeftCancelBaseCase
|
||||
plusLeftCancel (S left) right right' p =
|
||||
let inductiveHypothesis = plusLeftCancel left right right' in
|
||||
?plusLeftCancelStepCase
|
||||
|
||||
total plusRightCancel : (left : Nat) -> (left' : Nat) -> (right : Nat) ->
|
||||
(p : left + right = left' + right) -> left = left'
|
||||
plusRightCancel left left' O p = ?plusRightCancelBaseCase
|
||||
plusRightCancel left left' Z p = ?plusRightCancelBaseCase
|
||||
plusRightCancel left left' (S right) p =
|
||||
let inductiveHypothesis = plusRightCancel left left' right in
|
||||
?plusRightCancelStepCase
|
||||
|
||||
total plusLeftLeftRightZero : (left : Nat) -> (right : Nat) ->
|
||||
(p : left + right = left) -> right = O
|
||||
plusLeftLeftRightZero O right p = ?plusLeftLeftRightZeroBaseCase
|
||||
(p : left + right = left) -> right = Z
|
||||
plusLeftLeftRightZero Z right p = ?plusLeftLeftRightZeroBaseCase
|
||||
plusLeftLeftRightZero (S left) right p =
|
||||
let inductiveHypothesis = plusLeftLeftRightZero left right in
|
||||
?plusLeftLeftRightZeroStepCase
|
||||
|
||||
-- Mult
|
||||
total multZeroLeftZero : (right : Nat) -> O * right = O
|
||||
total multZeroLeftZero : (right : Nat) -> Z * right = Z
|
||||
multZeroLeftZero right = refl
|
||||
|
||||
total multZeroRightZero : (left : Nat) -> left * O = O
|
||||
multZeroRightZero O = refl
|
||||
total multZeroRightZero : (left : Nat) -> left * Z = Z
|
||||
multZeroRightZero Z = refl
|
||||
multZeroRightZero (S left) =
|
||||
let inductiveHypothesis = multZeroRightZero left in
|
||||
?multZeroRightZeroStepCase
|
||||
|
||||
total multRightSuccPlus : (left : Nat) -> (right : Nat) ->
|
||||
left * (S right) = left + (left * right)
|
||||
multRightSuccPlus O right = refl
|
||||
multRightSuccPlus Z right = refl
|
||||
multRightSuccPlus (S left) right =
|
||||
let inductiveHypothesis = multRightSuccPlus left right in
|
||||
?multRightSuccPlusStepCase
|
||||
@ -341,40 +341,40 @@ multLeftSuccPlus left right = refl
|
||||
|
||||
total multCommutative : (left : Nat) -> (right : Nat) ->
|
||||
left * right = right * left
|
||||
multCommutative O right = ?multCommutativeBaseCase
|
||||
multCommutative Z right = ?multCommutativeBaseCase
|
||||
multCommutative (S left) right =
|
||||
let inductiveHypothesis = multCommutative left right in
|
||||
?multCommutativeStepCase
|
||||
|
||||
total multDistributesOverPlusRight : (left : Nat) -> (centre : Nat) -> (right : Nat) ->
|
||||
left * (centre + right) = (left * centre) + (left * right)
|
||||
multDistributesOverPlusRight O centre right = refl
|
||||
multDistributesOverPlusRight Z centre right = refl
|
||||
multDistributesOverPlusRight (S left) centre right =
|
||||
let inductiveHypothesis = multDistributesOverPlusRight left centre right in
|
||||
?multDistributesOverPlusRightStepCase
|
||||
|
||||
total multDistributesOverPlusLeft : (left : Nat) -> (centre : Nat) -> (right : Nat) ->
|
||||
(left + centre) * right = (left * right) + (centre * right)
|
||||
multDistributesOverPlusLeft O centre right = refl
|
||||
multDistributesOverPlusLeft Z centre right = refl
|
||||
multDistributesOverPlusLeft (S left) centre right =
|
||||
let inductiveHypothesis = multDistributesOverPlusLeft left centre right in
|
||||
?multDistributesOverPlusLeftStepCase
|
||||
|
||||
total multAssociative : (left : Nat) -> (centre : Nat) -> (right : Nat) ->
|
||||
left * (centre * right) = (left * centre) * right
|
||||
multAssociative O centre right = refl
|
||||
multAssociative Z centre right = refl
|
||||
multAssociative (S left) centre right =
|
||||
let inductiveHypothesis = multAssociative left centre right in
|
||||
?multAssociativeStepCase
|
||||
|
||||
total multOneLeftNeutral : (right : Nat) -> 1 * right = right
|
||||
multOneLeftNeutral O = refl
|
||||
multOneLeftNeutral Z = refl
|
||||
multOneLeftNeutral (S right) =
|
||||
let inductiveHypothesis = multOneLeftNeutral right in
|
||||
?multOneLeftNeutralStepCase
|
||||
|
||||
total multOneRightNeutral : (left : Nat) -> left * 1 = left
|
||||
multOneRightNeutral O = refl
|
||||
multOneRightNeutral Z = refl
|
||||
multOneRightNeutral (S left) =
|
||||
let inductiveHypothesis = multOneRightNeutral left in
|
||||
?multOneRightNeutralStepCase
|
||||
@ -384,51 +384,51 @@ total minusSuccSucc : (left : Nat) -> (right : Nat) ->
|
||||
(S left) - (S right) = left - right
|
||||
minusSuccSucc left right = refl
|
||||
|
||||
total minusZeroLeft : (right : Nat) -> 0 - right = O
|
||||
total minusZeroLeft : (right : Nat) -> 0 - right = Z
|
||||
minusZeroLeft right = refl
|
||||
|
||||
total minusZeroRight : (left : Nat) -> left - 0 = left
|
||||
minusZeroRight O = refl
|
||||
minusZeroRight Z = refl
|
||||
minusZeroRight (S left) = refl
|
||||
|
||||
total minusZeroN : (n : Nat) -> O = n - n
|
||||
minusZeroN O = refl
|
||||
total minusZeroN : (n : Nat) -> Z = n - n
|
||||
minusZeroN Z = refl
|
||||
minusZeroN (S n) = minusZeroN n
|
||||
|
||||
total minusOneSuccN : (n : Nat) -> S O = (S n) - n
|
||||
minusOneSuccN O = refl
|
||||
total minusOneSuccN : (n : Nat) -> S Z = (S n) - n
|
||||
minusOneSuccN Z = refl
|
||||
minusOneSuccN (S n) = minusOneSuccN n
|
||||
|
||||
total minusSuccOne : (n : Nat) -> S n - 1 = n
|
||||
minusSuccOne O = refl
|
||||
minusSuccOne Z = refl
|
||||
minusSuccOne (S n) = refl
|
||||
|
||||
total minusPlusZero : (n : Nat) -> (m : Nat) -> n - (n + m) = O
|
||||
minusPlusZero O m = refl
|
||||
total minusPlusZero : (n : Nat) -> (m : Nat) -> n - (n + m) = Z
|
||||
minusPlusZero Z m = refl
|
||||
minusPlusZero (S n) m = minusPlusZero n m
|
||||
|
||||
total minusMinusMinusPlus : (left : Nat) -> (centre : Nat) -> (right : Nat) ->
|
||||
left - centre - right = left - (centre + right)
|
||||
minusMinusMinusPlus O O right = refl
|
||||
minusMinusMinusPlus (S left) O right = refl
|
||||
minusMinusMinusPlus O (S centre) right = refl
|
||||
minusMinusMinusPlus Z Z right = refl
|
||||
minusMinusMinusPlus (S left) Z right = refl
|
||||
minusMinusMinusPlus Z (S centre) right = refl
|
||||
minusMinusMinusPlus (S left) (S centre) right =
|
||||
let inductiveHypothesis = minusMinusMinusPlus left centre right in
|
||||
?minusMinusMinusPlusStepCase
|
||||
|
||||
total plusMinusLeftCancel : (left : Nat) -> (right : Nat) -> (right' : Nat) ->
|
||||
(left + right) - (left + right') = right - right'
|
||||
plusMinusLeftCancel O right right' = refl
|
||||
plusMinusLeftCancel Z right right' = refl
|
||||
plusMinusLeftCancel (S left) right right' =
|
||||
let inductiveHypothesis = plusMinusLeftCancel left right right' in
|
||||
?plusMinusLeftCancelStepCase
|
||||
|
||||
total multDistributesOverMinusLeft : (left : Nat) -> (centre : Nat) -> (right : Nat) ->
|
||||
(left - centre) * right = (left * right) - (centre * right)
|
||||
multDistributesOverMinusLeft O O right = refl
|
||||
multDistributesOverMinusLeft (S left) O right =
|
||||
multDistributesOverMinusLeft Z Z right = refl
|
||||
multDistributesOverMinusLeft (S left) Z right =
|
||||
?multDistributesOverMinusLeftBaseCase
|
||||
multDistributesOverMinusLeft O (S centre) right = refl
|
||||
multDistributesOverMinusLeft Z (S centre) right = refl
|
||||
multDistributesOverMinusLeft (S left) (S centre) right =
|
||||
let inductiveHypothesis = multDistributesOverMinusLeft left centre right in
|
||||
?multDistributesOverMinusLeftStepCase
|
||||
@ -445,35 +445,35 @@ powerSuccPowerLeft base exp = refl
|
||||
|
||||
total multPowerPowerPlus : (base : Nat) -> (exp : Nat) -> (exp' : Nat) ->
|
||||
(power base exp) * (power base exp') = power base (exp + exp')
|
||||
multPowerPowerPlus base O exp' = ?multPowerPowerPlusBaseCase
|
||||
multPowerPowerPlus base Z exp' = ?multPowerPowerPlusBaseCase
|
||||
multPowerPowerPlus base (S exp) exp' =
|
||||
let inductiveHypothesis = multPowerPowerPlus base exp exp' in
|
||||
?multPowerPowerPlusStepCase
|
||||
|
||||
total powerZeroOne : (base : Nat) -> power base 0 = S O
|
||||
total powerZeroOne : (base : Nat) -> power base 0 = S Z
|
||||
powerZeroOne base = refl
|
||||
|
||||
total powerOneNeutral : (base : Nat) -> power base 1 = base
|
||||
powerOneNeutral O = refl
|
||||
powerOneNeutral Z = refl
|
||||
powerOneNeutral (S base) =
|
||||
let inductiveHypothesis = powerOneNeutral base in
|
||||
?powerOneNeutralStepCase
|
||||
|
||||
total powerOneSuccOne : (exp : Nat) -> power 1 exp = S O
|
||||
powerOneSuccOne O = refl
|
||||
total powerOneSuccOne : (exp : Nat) -> power 1 exp = S Z
|
||||
powerOneSuccOne Z = refl
|
||||
powerOneSuccOne (S exp) =
|
||||
let inductiveHypothesis = powerOneSuccOne exp in
|
||||
?powerOneSuccOneStepCase
|
||||
|
||||
total powerSuccSuccMult : (base : Nat) -> power base 2 = mult base base
|
||||
powerSuccSuccMult O = refl
|
||||
powerSuccSuccMult Z = refl
|
||||
powerSuccSuccMult (S base) =
|
||||
let inductiveHypothesis = powerSuccSuccMult base in
|
||||
?powerSuccSuccMultStepCase
|
||||
|
||||
total powerPowerMultPower : (base : Nat) -> (exp : Nat) -> (exp' : Nat) ->
|
||||
power (power base exp) exp' = power base (exp * exp')
|
||||
powerPowerMultPower base exp O = ?powerPowerMultPowerBaseCase
|
||||
powerPowerMultPower base exp Z = ?powerPowerMultPowerBaseCase
|
||||
powerPowerMultPower base exp (S exp') =
|
||||
let inductiveHypothesis = powerPowerMultPower base exp exp' in
|
||||
?powerPowerMultPowerStepCase
|
||||
@ -484,9 +484,9 @@ predSucc n = refl
|
||||
|
||||
total minusSuccPred : (left : Nat) -> (right : Nat) ->
|
||||
left - (S right) = pred (left - right)
|
||||
minusSuccPred O right = refl
|
||||
minusSuccPred (S left) O =
|
||||
let inductiveHypothesis = minusSuccPred left O in
|
||||
minusSuccPred Z right = refl
|
||||
minusSuccPred (S left) Z =
|
||||
let inductiveHypothesis = minusSuccPred left Z in
|
||||
?minusSuccPredStepCase
|
||||
minusSuccPred (S left) (S right) =
|
||||
let inductiveHypothesis = minusSuccPred left right in
|
||||
@ -520,69 +520,69 @@ boolElimMultMultRight False right t f = refl
|
||||
|
||||
-- Orders
|
||||
total lteNTrue : (n : Nat) -> lte n n = True
|
||||
lteNTrue O = refl
|
||||
lteNTrue Z = refl
|
||||
lteNTrue (S n) = lteNTrue n
|
||||
|
||||
total lteSuccZeroFalse : (n : Nat) -> lte (S n) O = False
|
||||
lteSuccZeroFalse O = refl
|
||||
total lteSuccZeroFalse : (n : Nat) -> lte (S n) Z = False
|
||||
lteSuccZeroFalse Z = refl
|
||||
lteSuccZeroFalse (S n) = refl
|
||||
|
||||
-- Minimum and maximum
|
||||
total minimumZeroZeroRight : (right : Nat) -> minimum 0 right = O
|
||||
minimumZeroZeroRight O = refl
|
||||
total minimumZeroZeroRight : (right : Nat) -> minimum 0 right = Z
|
||||
minimumZeroZeroRight Z = refl
|
||||
minimumZeroZeroRight (S right) = minimumZeroZeroRight right
|
||||
|
||||
total minimumZeroZeroLeft : (left : Nat) -> minimum left 0 = O
|
||||
minimumZeroZeroLeft O = refl
|
||||
total minimumZeroZeroLeft : (left : Nat) -> minimum left 0 = Z
|
||||
minimumZeroZeroLeft Z = refl
|
||||
minimumZeroZeroLeft (S left) = refl
|
||||
|
||||
total minimumSuccSucc : (left : Nat) -> (right : Nat) ->
|
||||
minimum (S left) (S right) = S (minimum left right)
|
||||
minimumSuccSucc O O = refl
|
||||
minimumSuccSucc (S left) O = refl
|
||||
minimumSuccSucc O (S right) = refl
|
||||
minimumSuccSucc Z Z = refl
|
||||
minimumSuccSucc (S left) Z = refl
|
||||
minimumSuccSucc Z (S right) = refl
|
||||
minimumSuccSucc (S left) (S right) =
|
||||
let inductiveHypothesis = minimumSuccSucc left right in
|
||||
?minimumSuccSuccStepCase
|
||||
|
||||
total minimumCommutative : (left : Nat) -> (right : Nat) ->
|
||||
minimum left right = minimum right left
|
||||
minimumCommutative O O = refl
|
||||
minimumCommutative O (S right) = refl
|
||||
minimumCommutative (S left) O = refl
|
||||
minimumCommutative Z Z = refl
|
||||
minimumCommutative Z (S right) = refl
|
||||
minimumCommutative (S left) Z = refl
|
||||
minimumCommutative (S left) (S right) =
|
||||
let inductiveHypothesis = minimumCommutative left right in
|
||||
?minimumCommutativeStepCase
|
||||
|
||||
total maximumZeroNRight : (right : Nat) -> maximum O right = right
|
||||
maximumZeroNRight O = refl
|
||||
total maximumZeroNRight : (right : Nat) -> maximum Z right = right
|
||||
maximumZeroNRight Z = refl
|
||||
maximumZeroNRight (S right) = refl
|
||||
|
||||
total maximumZeroNLeft : (left : Nat) -> maximum left O = left
|
||||
maximumZeroNLeft O = refl
|
||||
total maximumZeroNLeft : (left : Nat) -> maximum left Z = left
|
||||
maximumZeroNLeft Z = refl
|
||||
maximumZeroNLeft (S left) = refl
|
||||
|
||||
total maximumSuccSucc : (left : Nat) -> (right : Nat) ->
|
||||
S (maximum left right) = maximum (S left) (S right)
|
||||
maximumSuccSucc O O = refl
|
||||
maximumSuccSucc (S left) O = refl
|
||||
maximumSuccSucc O (S right) = refl
|
||||
maximumSuccSucc Z Z = refl
|
||||
maximumSuccSucc (S left) Z = refl
|
||||
maximumSuccSucc Z (S right) = refl
|
||||
maximumSuccSucc (S left) (S right) =
|
||||
let inductiveHypothesis = maximumSuccSucc left right in
|
||||
?maximumSuccSuccStepCase
|
||||
|
||||
total maximumCommutative : (left : Nat) -> (right : Nat) ->
|
||||
maximum left right = maximum right left
|
||||
maximumCommutative O O = refl
|
||||
maximumCommutative (S left) O = refl
|
||||
maximumCommutative O (S right) = refl
|
||||
maximumCommutative Z Z = refl
|
||||
maximumCommutative (S left) Z = refl
|
||||
maximumCommutative Z (S right) = refl
|
||||
maximumCommutative (S left) (S right) =
|
||||
let inductiveHypothesis = maximumCommutative left right in
|
||||
?maximumCommutativeStepCase
|
||||
|
||||
-- div and mod
|
||||
total modZeroZero : (n : Nat) -> mod 0 n = O
|
||||
modZeroZero O = refl
|
||||
total modZeroZero : (n : Nat) -> mod 0 n = Z
|
||||
modZeroZero Z = refl
|
||||
modZeroZero (S n) = refl
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
@ -613,7 +613,7 @@ powerSuccSuccMultStepCase = proof {
|
||||
powerOneSuccOneStepCase = proof {
|
||||
intros;
|
||||
rewrite inductiveHypothesis;
|
||||
rewrite sym (plusZeroRightNeutral (power (S O) exp));
|
||||
rewrite sym (plusZeroRightNeutral (power (S Z) exp));
|
||||
trivial;
|
||||
}
|
||||
|
||||
|
@ -10,7 +10,7 @@ import Prelude.Nat
|
||||
infixr 7 ::
|
||||
|
||||
data Vect : Type -> Nat -> Type where
|
||||
Nil : Vect a O
|
||||
Nil : Vect a Z
|
||||
(::) : a -> Vect a n -> Vect a (S n)
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
@ -81,7 +81,7 @@ fromList (x::xs) = x :: fromList xs
|
||||
(++) (x::xs) ys = x :: xs ++ ys
|
||||
|
||||
replicate : (n : Nat) -> a -> Vect a n
|
||||
replicate O x = []
|
||||
replicate Z x = []
|
||||
replicate (S k) x = x :: replicate k x
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
@ -322,7 +322,7 @@ range =
|
||||
reverse range_
|
||||
where
|
||||
range_ : Vect (Fin n) n
|
||||
range_ {n=O} = Nil
|
||||
range_ {n=Z} = Nil
|
||||
range_ {n=(S _)} = last :: map weaken range_
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
@ -3,10 +3,10 @@ module Uninhabited
|
||||
class Uninhabited t where
|
||||
total uninhabited : t -> _|_
|
||||
|
||||
instance Uninhabited (Fin O) where
|
||||
instance Uninhabited (Fin Z) where
|
||||
uninhabited fO impossible
|
||||
uninhabited (fS f) impossible
|
||||
|
||||
instance Uninhabited (O = S n) where
|
||||
instance Uninhabited (Z = S n) where
|
||||
uninhabited refl impossible
|
||||
|
||||
|
@ -11,7 +11,7 @@ instance Show (Bit n) where
|
||||
infixl 5 #
|
||||
|
||||
data Binary : (width : Nat) -> (value : Nat) -> Type where
|
||||
zero : Binary O O
|
||||
zero : Binary Z Z
|
||||
(#) : Binary w v -> Bit bit -> Binary (S w) (bit + 2 * v)
|
||||
|
||||
instance Show (Binary w k) where
|
||||
@ -83,7 +83,7 @@ main.adc_lemma_2 = proof {
|
||||
rewrite sym (plusAssociative x v v1);
|
||||
rewrite sym (plusCommutative (plus (plus x v) v1) v1);
|
||||
rewrite plusZeroRightNeutral (plus (plus x v) v1);
|
||||
rewrite sym (plusAssociative (plus x v) v1 (plus (plus (plus x v) v1) O));
|
||||
rewrite sym (plusAssociative (plus x v) v1 (plus (plus (plus x v) v1) Z));
|
||||
trivial;
|
||||
}
|
||||
|
||||
|
@ -237,7 +237,7 @@ instance ToIR (TT Name) where
|
||||
where mkUnused u i [] = []
|
||||
mkUnused u i (x : xs) | i `elem` u = LNothing : mkUnused u (i + 1) xs
|
||||
| otherwise = x : mkUnused u (i + 1) xs
|
||||
-- ir' env (P _ (NS (UN "O") ["Nat", "Prelude"]) _)
|
||||
-- ir' env (P _ (NS (UN "Z") ["Nat", "Prelude"]) _)
|
||||
-- = return $ LConst (BI 0)
|
||||
ir' env (P _ n _) = return $ LV (Glob n)
|
||||
ir' env (V i) | i >= 0 && i < length env = return $ LV (Glob (env!!i))
|
||||
@ -331,7 +331,7 @@ mkIntIty "IT16" = FArith (ATInt (ITFixed IT16))
|
||||
mkIntIty "IT32" = FArith (ATInt (ITFixed IT32))
|
||||
mkIntIty "IT64" = FArith (ATInt (ITFixed IT64))
|
||||
|
||||
zname = NS (UN "O") ["Nat","Prelude"]
|
||||
zname = NS (UN "Z") ["Nat","Prelude"]
|
||||
sname = NS (UN "S") ["Nat","Prelude"]
|
||||
|
||||
instance ToIR ([Name], SC) where
|
||||
@ -351,7 +351,7 @@ instance ToIR SC where
|
||||
return $ LCase (LV (Glob n)) alts'
|
||||
ir' ImpossibleCase = return LNothing
|
||||
|
||||
-- special cases for O and S
|
||||
-- special cases for Z and S
|
||||
-- Needs rethink: projections make this fail
|
||||
-- mkIRAlt n (ConCase z _ [] rhs) | z == zname
|
||||
-- = mkIRAlt n (ConstCase (BI 0) rhs)
|
||||
|
@ -1128,10 +1128,10 @@ showImp impl tm = se 10 tm where
|
||||
xs -> "[" ++ intercalate "," (map (se p) xs) ++ "]"
|
||||
slist _ _ = Nothing
|
||||
|
||||
-- since Prelude is always imported, S & O are unqualified iff they're the
|
||||
-- since Prelude is always imported, S & Z are unqualified iff they're the
|
||||
-- Nat ones.
|
||||
snat p (PRef _ o)
|
||||
| show o == (natns++"O") || show o == "O" = Just 0
|
||||
| show o == (natns++"Z") || show o == "Z" = Just 0
|
||||
snat p (PApp _ s [PExp {getTm=n}])
|
||||
| show s == (natns++"S") || show s == "S",
|
||||
Just n' <- snat p n
|
||||
|
@ -39,7 +39,7 @@ instance Transform CaseAlt where
|
||||
|
||||
natTrans = [TermTrans zero, TermTrans suc, CaseTrans natcase]
|
||||
|
||||
zname = NS (UN "O") ["Nat","Prelude"]
|
||||
zname = NS (UN "Z") ["Nat","Prelude"]
|
||||
sname = NS (UN "S") ["Nat","Prelude"]
|
||||
|
||||
zero :: TT Name -> TT Name
|
||||
|
@ -8,4 +8,4 @@ data Imp : Type where
|
||||
MkImp : {any : Type} -> any -> Imp
|
||||
|
||||
testVal : Imp
|
||||
testVal = MkImp (apply id O)
|
||||
testVal = MkImp (apply id Z)
|
||||
|
@ -3,12 +3,12 @@ module Main
|
||||
h : Bool -> Nat
|
||||
h False = r1 where
|
||||
r : Nat
|
||||
r = S O
|
||||
r = S Z
|
||||
r1 : Nat
|
||||
r1 = r
|
||||
h True = r2 where
|
||||
r : Nat
|
||||
r = O
|
||||
r = Z
|
||||
r2 : Nat
|
||||
r2 = r
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
module Main
|
||||
|
||||
rep : (n : Nat) -> Char -> Vect Char n
|
||||
rep O x = []
|
||||
rep Z x = []
|
||||
rep (S k) x = x :: rep k x
|
||||
|
||||
data RLE : Vect Char n -> Type where
|
||||
@ -18,12 +18,12 @@ eq x y = if x == y then Just ?eqCharOK else Nothing
|
||||
rle : (xs : Vect Char n) -> RLE xs
|
||||
rle [] = REnd
|
||||
rle (x :: xs) with (rle xs)
|
||||
rle (x :: Vect.Nil) | REnd = RChar O x REnd
|
||||
rle (x :: Vect.Nil) | REnd = RChar Z x REnd
|
||||
rle (x :: rep (S n) yvar ++ ys) | RChar n yvar rs with (eq x yvar)
|
||||
rle (x :: rep (S n) x ++ ys) | RChar n x rs | Just refl
|
||||
= RChar (S n) x rs
|
||||
rle (x :: rep (S n) y ++ ys) | RChar n y rs | Nothing
|
||||
= RChar O x (RChar n y rs)
|
||||
= RChar Z x (RChar n y rs)
|
||||
|
||||
compress : Vect Char n -> String
|
||||
compress xs with (rle xs)
|
||||
|
@ -3,7 +3,7 @@ module RBTree
|
||||
data Colour = Red | Black
|
||||
|
||||
data RBTree : Type -> Type -> Nat -> Colour -> Type where
|
||||
Leaf : RBTree k v O Black
|
||||
Leaf : RBTree k v Z Black
|
||||
RedBranch : k -> v -> RBTree k v n Black -> RBTree k v n Black -> RBTree k v n Red
|
||||
BlackBranch : k -> v -> RBTree k v n x -> RBTree k v n y -> RBTree k v (S n) Black
|
||||
|
||||
|
@ -6,9 +6,9 @@ data Cmp : Nat -> Nat -> Type where
|
||||
cmpGT : (x : _) -> Cmp (y + S x) y
|
||||
|
||||
total cmp : (x, y : Nat) -> Cmp x y
|
||||
cmp O O = cmpEQ
|
||||
cmp O (S k) = cmpLT _
|
||||
cmp (S k) O = cmpGT _
|
||||
cmp Z Z = cmpEQ
|
||||
cmp Z (S k) = cmpLT _
|
||||
cmp (S k) Z = cmpGT _
|
||||
cmp (S x) (S y) with (cmp x y)
|
||||
cmp (S x) (S (x + (S k))) | cmpLT k = cmpLT k
|
||||
cmp (S x) (S x) | cmpEQ = cmpEQ
|
||||
|
@ -6,7 +6,7 @@
|
||||
> filterTagP : (p : alpha -> Bool) ->
|
||||
> (as : Vect alpha n) ->
|
||||
> so (isAnyBy p (n ** as)) ->
|
||||
> (m : Nat ** (Vect (a : alpha ** so (p a)) m, so (m > O)))
|
||||
> (m : Nat ** (Vect (a : alpha ** so (p a)) m, so (m > Z)))
|
||||
> filterTagP {n = S m} p (a :: as) q with (p a)
|
||||
> | True = (_
|
||||
> **
|
||||
|
@ -1,5 +1,5 @@
|
||||
module usubst
|
||||
|
||||
total unsafeSubst : (P : a -> Type) -> (x : a) -> (y : a) -> P x -> P y
|
||||
unsafeSubst P x y px with (O)
|
||||
unsafeSubst P x y px with (Z)
|
||||
unsafeSubst P x x px | _ = px
|
||||
|
@ -1,9 +1,9 @@
|
||||
vfoldl : (P : Nat -> Type) ->
|
||||
((x : Nat) -> P x -> a -> P (S x)) -> P O
|
||||
((x : Nat) -> P x -> a -> P (S x)) -> P Z
|
||||
-> Vect a m -> P m
|
||||
-- vfoldl P cons nil []
|
||||
-- = nil
|
||||
vfoldl P cons nil (x :: xs)
|
||||
= vfoldl (\k => P (S k)) (\ n => cons (S n)) (cons O nil x) xs
|
||||
= vfoldl (\k => P (S k)) (\ n => cons (S n)) (cons Z nil x) xs
|
||||
-- vfoldl P cons nil (x :: xs)
|
||||
-- = vfoldl (\n => P (S n)) (\ n => cons _) (cons _ nil x) xs
|
||||
|
@ -2,13 +2,13 @@ module A
|
||||
|
||||
%default total
|
||||
|
||||
codata B = O B | I B
|
||||
codata B = Z B | I B
|
||||
|
||||
showB : B -> String
|
||||
showB (I x) = "I" ++ showB x
|
||||
showB (O x) = "O" ++ showB x
|
||||
showB (Z x) = "Z" ++ showB x
|
||||
|
||||
instance Show B where show = showB
|
||||
|
||||
os : B
|
||||
os = O os
|
||||
os = Z os
|
||||
|
@ -9,7 +9,7 @@ codata InfStream a = (::) a (InfStream a)
|
||||
-- natFromStream n = (::) n (natFromStream (S n))
|
||||
|
||||
take : (n: Nat) -> InfStream a -> Vect a n
|
||||
take O _ = []
|
||||
take Z _ = []
|
||||
take (S n) (x :: xs) = x :: take n xs
|
||||
|
||||
hdtl : InfStream a -> (a, InfStream a)
|
||||
|
@ -2,7 +2,7 @@ module Main
|
||||
|
||||
total
|
||||
pull : Fin (S n) -> Vect a (S n) -> (a, Vect a n)
|
||||
pull {n=O} _ (x :: xs) = (x, xs)
|
||||
pull {n=Z} _ (x :: xs) = (x, xs)
|
||||
-- pull {n=S q} fO (Vect.(::) {n=S _} x xs) = (x, xs)
|
||||
pull {n=S _} (fS n) (x :: xs) =
|
||||
let (v, vs) = pull n xs in
|
||||
|
@ -8,7 +8,7 @@ tlist = [1, 2, 3, 4, 5]
|
||||
|
||||
main : IO ()
|
||||
main = do print (abs (-8))
|
||||
print (abs (S O))
|
||||
print (abs (S Z))
|
||||
print (span isAlpha tstr)
|
||||
print (break isDigit tstr)
|
||||
print (span (\x => x < 3) tlist)
|
||||
|
@ -5,14 +5,14 @@ data Parity : Nat -> Type where
|
||||
odd : Parity (S (n + n))
|
||||
|
||||
parity : (n:Nat) -> Parity n
|
||||
parity O = even {n=O}
|
||||
parity (S O) = odd {n=O}
|
||||
parity Z = even {n=Z}
|
||||
parity (S Z) = odd {n=Z}
|
||||
parity (S (S k)) with (parity k)
|
||||
parity (S (S (j + j))) | (even {n = j}) ?= even {n=S j}
|
||||
parity (S (S (S (j + j)))) | (odd {n = j}) ?= odd {n=S j}
|
||||
|
||||
natToBin : Nat -> List Bool
|
||||
natToBin O = Nil
|
||||
natToBin Z = Nil
|
||||
natToBin k with (parity k)
|
||||
natToBin (j + j) | even {n = j} = False :: natToBin j
|
||||
natToBin (S (j + j)) | odd {n = j} = True :: natToBin j
|
||||
|
@ -5,8 +5,8 @@ data Parity : Nat -> Type where
|
||||
odd : Parity (S (n + n))
|
||||
|
||||
parity : (n:Nat) -> Parity n
|
||||
parity O = even {n=O}
|
||||
parity (S O) = odd {n=O}
|
||||
parity Z = even {n=Z}
|
||||
parity (S Z) = odd {n=Z}
|
||||
parity (S (S k)) with (parity k)
|
||||
parity (S (S (j + j))) | even ?= even {n=S j}
|
||||
parity (S (S (S (j + j)))) | odd ?= odd {n=S j}
|
||||
|
@ -4,8 +4,8 @@ import Parity
|
||||
import System
|
||||
|
||||
data Bit : Nat -> Type where
|
||||
b0 : Bit O
|
||||
b1 : Bit (S O)
|
||||
b0 : Bit Z
|
||||
b1 : Bit (S Z)
|
||||
|
||||
instance Show (Bit n) where
|
||||
show = show' where
|
||||
@ -16,7 +16,7 @@ instance Show (Bit n) where
|
||||
infixl 5 #
|
||||
|
||||
data Binary : (width : Nat) -> (value : Nat) -> Type where
|
||||
zero : Binary O O
|
||||
zero : Binary Z Z
|
||||
(#) : Binary w v -> Bit bit -> Binary (S w) (bit + 2 * v)
|
||||
|
||||
instance Show (Binary w k) where
|
||||
@ -29,9 +29,9 @@ pad (num # x) = pad num # x
|
||||
|
||||
natToBin : (width : Nat) -> (n : Nat) ->
|
||||
Maybe (Binary width n)
|
||||
natToBin O (S k) = Nothing
|
||||
natToBin O O = Just zero
|
||||
natToBin (S k) O = do x <- natToBin k O
|
||||
natToBin Z (S k) = Nothing
|
||||
natToBin Z Z = Just zero
|
||||
natToBin (S k) Z = do x <- natToBin k Z
|
||||
Just (pad x)
|
||||
natToBin (S w) (S k) with (parity k)
|
||||
natToBin (S w) (S (plus j j)) | even = do jbin <- natToBin w j
|
||||
|
@ -8,7 +8,7 @@ countFrom : Int -> Stream Int
|
||||
countFrom x = x :: countFrom (x + 1)
|
||||
|
||||
take : Nat -> Stream a -> List a
|
||||
take O _ = []
|
||||
take Z _ = []
|
||||
take (S n) (x :: xs) = x :: take n xs
|
||||
take n [] = []
|
||||
|
||||
|
@ -5,8 +5,8 @@ module scg
|
||||
data Ord = Zero | Suc Ord | Sup (Nat -> Ord)
|
||||
|
||||
natElim : (n : Nat) -> (P : Nat -> Type) ->
|
||||
(P O) -> ((n : Nat) -> (P n) -> (P (S n))) -> (P n)
|
||||
natElim O P mO mS = mO
|
||||
(P Z) -> ((n : Nat) -> (P n) -> (P (S n))) -> (P n)
|
||||
natElim Z P mO mS = mO
|
||||
natElim (S k) P mO mS = mS k (natElim k P mO mS)
|
||||
|
||||
ordElim : (x : Ord) ->
|
||||
@ -23,10 +23,10 @@ ordElim (Sup f) P mZ mSuc mSup =
|
||||
myplus' : Nat -> Nat -> Nat
|
||||
myplus : Nat -> Nat -> Nat
|
||||
|
||||
myplus O y = y
|
||||
myplus Z y = y
|
||||
myplus (S k) y = S (myplus' k y)
|
||||
|
||||
myplus' O y = y
|
||||
myplus' Z y = y
|
||||
myplus' (S k) y = S (myplus y k)
|
||||
|
||||
mnubBy : (a -> a -> Bool) -> List a -> List a
|
||||
@ -46,23 +46,23 @@ vtrans [] _ = []
|
||||
vtrans (x :: xs) ys = x :: vtrans ys ys
|
||||
|
||||
even : Nat -> Bool
|
||||
even O = True
|
||||
even Z = True
|
||||
even (S k) = odd k
|
||||
where
|
||||
odd : Nat -> Bool
|
||||
odd O = False
|
||||
odd Z = False
|
||||
odd (S k) = even k
|
||||
|
||||
ack : Nat -> Nat -> Nat
|
||||
ack O n = S n
|
||||
ack (S m) O = ack m (S O)
|
||||
ack Z n = S n
|
||||
ack (S m) Z = ack m (S Z)
|
||||
ack (S m) (S n) = ack m (ack (S m) n)
|
||||
|
||||
data Bin = eps | c0 Bin | c1 Bin
|
||||
|
||||
foo : Bin -> Nat
|
||||
foo eps = O
|
||||
foo (c0 eps) = O
|
||||
foo eps = Z
|
||||
foo (c0 eps) = Z
|
||||
foo (c0 (c1 x)) = S (foo (c1 x))
|
||||
foo (c0 (c0 x)) = foo (c0 x)
|
||||
foo (c1 x) = S (foo x)
|
||||
@ -70,19 +70,19 @@ foo (c1 x) = S (foo x)
|
||||
bar : Nat -> Nat -> Nat
|
||||
bar x y = mp x y where
|
||||
mp : Nat -> Nat -> Nat
|
||||
mp O y = y
|
||||
mp Z y = y
|
||||
mp (S k) y = S (bar k y)
|
||||
|
||||
total mfib : Nat -> Nat
|
||||
mfib O = O
|
||||
mfib (S O) = S O
|
||||
mfib Z = Z
|
||||
mfib (S Z) = S Z
|
||||
mfib (S (S n)) = mfib (S n) + mfib n
|
||||
|
||||
maxCommutative : (left : Nat) -> (right : Nat) ->
|
||||
maximum left right = maximum right left
|
||||
maxCommutative O O = refl
|
||||
maxCommutative (S left) O = refl
|
||||
maxCommutative O (S right) = refl
|
||||
maxCommutative Z Z = refl
|
||||
maxCommutative (S left) Z = refl
|
||||
maxCommutative Z (S right) = refl
|
||||
maxCommutative (S left) (S right) =
|
||||
let inductiveHypothesis = maxCommutative left right in
|
||||
?maxCommutativeStepCase
|
||||
|
@ -1,7 +1,7 @@
|
||||
> module Main
|
||||
|
||||
> ifTrue : so True -> Nat
|
||||
> ifTrue oh = S O
|
||||
> ifTrue oh = S Z
|
||||
|
||||
> ifFalse : so False -> Nat
|
||||
> ifFalse oh impossible
|
||||
|
@ -21,9 +21,9 @@ testMemory = do Src :- allocate 5
|
||||
Dst :- initialize (prim__truncInt_B8 1) 2 oh
|
||||
move 2 2 3 oh oh
|
||||
Src :- free
|
||||
end <- Dst :- peek 4 (S O) oh
|
||||
end <- Dst :- peek 4 (S Z) oh
|
||||
Dst :- poke 4 (sub1 end) oh
|
||||
res <- Dst :- peek 1 (S(S(S(S O)))) oh
|
||||
res <- Dst :- peek 1 (S(S(S(S Z)))) oh
|
||||
Dst :- free
|
||||
return (map (prim__zextB8_Int) res)
|
||||
|
||||
|
@ -43,10 +43,10 @@ could be defined as:
|
||||
\begin{SaveVerbatim}{shownat}
|
||||
|
||||
instance Show Nat where
|
||||
show O = "O"
|
||||
show Z = "Z"
|
||||
show (S k) = "s" ++ show k
|
||||
|
||||
Idris> show (S (S (S O)))
|
||||
Idris> show (S (S (S Z)))
|
||||
"sssO" : String
|
||||
|
||||
\end{SaveVerbatim}
|
||||
@ -101,10 +101,10 @@ For example, for an instance of \texttt{Eq} for \texttt{Nat}:
|
||||
\begin{SaveVerbatim}{eqnat}
|
||||
|
||||
instance Eq Nat where
|
||||
O == O = True
|
||||
Z == Z = True
|
||||
(S x) == (S y) = x == y
|
||||
O == (S y) = False
|
||||
(S x) == O = False
|
||||
Z == (S y) = False
|
||||
(S x) == Z = False
|
||||
|
||||
x /= y = not (x == y)
|
||||
|
||||
@ -498,9 +498,9 @@ be \remph{named} as follows:
|
||||
\begin{SaveVerbatim}{myord}
|
||||
|
||||
instance [myord] Ord Nat where
|
||||
compare O (S n) = GT
|
||||
compare (S n) O = LT
|
||||
compare O O = EQ
|
||||
compare Z (S n) = GT
|
||||
compare (S n) Z = LT
|
||||
compare Z Z = EQ
|
||||
compare (S x) (S y) = compare @{myord} x y
|
||||
|
||||
\end{SaveVerbatim}
|
||||
|
@ -1,7 +1,7 @@
|
||||
module Main
|
||||
|
||||
data Binary : Nat -> Type where
|
||||
bEnd : Binary O
|
||||
bEnd : Binary Z
|
||||
bO : Binary n -> Binary (n + n)
|
||||
bI : Binary n -> Binary (S (n + n))
|
||||
|
||||
@ -15,21 +15,21 @@ data Parity : Nat -> Type where
|
||||
odd : Parity (S (n + n))
|
||||
|
||||
parity : (n:Nat) -> Parity n
|
||||
parity O = even {n=O}
|
||||
parity (S O) = odd {n=O}
|
||||
parity Z = even {n=Z}
|
||||
parity (S Z) = odd {n=Z}
|
||||
parity (S (S k)) with (parity k)
|
||||
parity (S (S (j + j))) | even ?= even {n=S j}
|
||||
parity (S (S (S (j + j)))) | odd ?= odd {n=S j}
|
||||
|
||||
natToBin : (n:Nat) -> Binary n
|
||||
natToBin O = bEnd
|
||||
natToBin Z = bEnd
|
||||
natToBin (S k) with (parity k)
|
||||
natToBin (S (j + j)) | even = bI (natToBin j)
|
||||
natToBin (S (S (j + j))) | odd ?= bO (natToBin (S j))
|
||||
|
||||
intToNat : Int -> Nat
|
||||
intToNat 0 = O
|
||||
intToNat x = if (x>0) then (S (intToNat (x-1))) else O
|
||||
intToNat 0 = Z
|
||||
intToNat x = if (x>0) then (S (intToNat (x-1))) else Z
|
||||
|
||||
main : IO ()
|
||||
main = do putStr "Enter a number: "
|
||||
|
@ -5,15 +5,15 @@ fiveIsFive = refl
|
||||
twoPlusTwo : 2 + 2 = 4
|
||||
twoPlusTwo = refl
|
||||
|
||||
total disjoint : (n : Nat) -> O = S n -> _|_
|
||||
total disjoint : (n : Nat) -> Z = S n -> _|_
|
||||
disjoint n p = replace {P = disjointTy} p ()
|
||||
where
|
||||
disjointTy : Nat -> Type
|
||||
disjointTy O = ()
|
||||
disjointTy Z = ()
|
||||
disjointTy (S k) = _|_
|
||||
|
||||
total acyclic : (n : Nat) -> n = S n -> _|_
|
||||
acyclic O p = disjoint _ p
|
||||
acyclic Z p = disjoint _ p
|
||||
acyclic (S k) p = acyclic k (succInjective _ _ p)
|
||||
|
||||
empty1 : _|_
|
||||
@ -24,33 +24,33 @@ empty1 = hd [] where
|
||||
empty2 : _|_
|
||||
empty2 = empty2
|
||||
|
||||
plusReduces : (n:Nat) -> plus O n = n
|
||||
plusReduces : (n:Nat) -> plus Z n = n
|
||||
plusReduces n = refl
|
||||
|
||||
plusReducesO : (n:Nat) -> n = plus n O
|
||||
plusReducesO O = refl
|
||||
plusReducesO (S k) = cong (plusReducesO k)
|
||||
plusReducesZ : (n:Nat) -> n = plus n Z
|
||||
plusReducesZ Z = refl
|
||||
plusReducesZ (S k) = cong (plusReducesZ k)
|
||||
|
||||
plusReducesS : (n:Nat) -> (m:Nat) -> S (plus n m) = plus n (S m)
|
||||
plusReducesS O m = refl
|
||||
plusReducesS Z m = refl
|
||||
plusReducesS (S k) m = cong (plusReducesS k m)
|
||||
|
||||
plusReducesO' : (n:Nat) -> n = plus n O
|
||||
plusReducesO' O = ?plusredO_O
|
||||
plusReducesO' (S k) = let ih = plusReducesO' k in
|
||||
?plusredO_S
|
||||
plusReducesZ' : (n:Nat) -> n = plus n Z
|
||||
plusReducesZ' Z = ?plusredZ_Z
|
||||
plusReducesZ' (S k) = let ih = plusReducesZ' k in
|
||||
?plusredZ_S
|
||||
|
||||
|
||||
---------- Proofs ----------
|
||||
|
||||
plusredO_S = proof {
|
||||
plusredZ_S = proof {
|
||||
intro;
|
||||
intro;
|
||||
rewrite ih;
|
||||
trivial;
|
||||
}
|
||||
|
||||
plusredO_O = proof {
|
||||
plusredZ_Z = proof {
|
||||
compute;
|
||||
trivial;
|
||||
}
|
||||
|
@ -10,7 +10,7 @@ vec = (_ ** [3, 4])
|
||||
|
||||
list_lookup : Nat -> List a -> Maybe a
|
||||
list_lookup _ Nil = Nothing
|
||||
list_lookup O (x :: xs) = Just x
|
||||
list_lookup Z (x :: xs) = Just x
|
||||
list_lookup (S k) (x :: xs) = list_lookup k xs
|
||||
|
||||
lookup_default : Nat -> List a -> a -> a
|
||||
|
@ -5,14 +5,14 @@ data Parity : Nat -> Type where
|
||||
odd : Parity (S (n + n))
|
||||
|
||||
parity : (n:Nat) -> Parity n
|
||||
parity O = even {n=O}
|
||||
parity (S O) = odd {n=O}
|
||||
parity Z = even {n=Z}
|
||||
parity (S Z) = odd {n=Z}
|
||||
parity (S (S k)) with (parity k)
|
||||
parity (S (S (j + j))) | even ?= even {n=S j}
|
||||
parity (S (S (S (j + j)))) | odd ?= odd {n=S j}
|
||||
|
||||
natToBin : Nat -> List Bool
|
||||
natToBin O = Nil
|
||||
natToBin Z = Nil
|
||||
natToBin k with (parity k)
|
||||
natToBin (j + j) | even = False :: natToBin j
|
||||
natToBin (S (j + j)) | odd = True :: natToBin j
|
||||
|
@ -1,13 +1,13 @@
|
||||
module wheres
|
||||
|
||||
even : Nat -> Bool
|
||||
even O = True
|
||||
even Z = True
|
||||
even (S k) = odd k where
|
||||
odd O = False
|
||||
odd Z = False
|
||||
odd (S k) = even k
|
||||
|
||||
test : List Nat
|
||||
test = [c (S 1), c O, d (S O)]
|
||||
test = [c (S 1), c Z, d (S Z)]
|
||||
where c x = 42 + x
|
||||
d y = c (y + 1 + z y)
|
||||
where z w = y + w
|
||||
|
@ -22,8 +22,8 @@ We'd like to implement this as follows:
|
||||
\begin{SaveVerbatim}{parfail}
|
||||
|
||||
parity : (n:Nat) -> Parity n
|
||||
parity O = even {n=O}
|
||||
parity (S O) = odd {n=O}
|
||||
parity Z = even {n=Z}
|
||||
parity (S Z) = odd {n=Z}
|
||||
parity (S (S k)) with (parity k)
|
||||
parity (S (S (j + j))) | even = even {n=S j}
|
||||
parity (S (S (S (j + j)))) | odd = odd {n=S j}
|
||||
@ -77,8 +77,8 @@ except that they introduce the right hand side with a \texttt{?=} rathar than
|
||||
\begin{SaveVerbatim}{paritypro}
|
||||
|
||||
parity : (n:Nat) -> Parity n
|
||||
parity O = even {n=O}
|
||||
parity (S O) = odd {n=O}
|
||||
parity Z = even {n=Z}
|
||||
parity (S Z) = odd {n=Z}
|
||||
parity (S (S k)) with (parity k)
|
||||
parity (S (S (j + j))) | even ?= even {n=S j}
|
||||
parity (S (S (S (j + j)))) | odd ?= odd {n=S j}
|
||||
@ -231,7 +231,7 @@ case \texttt{Nat}):
|
||||
\begin{SaveVerbatim}{bindef}
|
||||
|
||||
data Binary : Nat -> Type where
|
||||
bEnd : Binary O
|
||||
bEnd : Binary Z
|
||||
bO : Binary n -> Binary (n + n)
|
||||
bI : Binary n -> Binary (S (n + n))
|
||||
|
||||
@ -263,7 +263,7 @@ provisional definition in the odd case:
|
||||
\begin{SaveVerbatim}{ntbdef}
|
||||
|
||||
natToBin : (n:Nat) -> Binary n
|
||||
natToBin O = bEnd
|
||||
natToBin Z = bEnd
|
||||
natToBin (S k) with (parity k)
|
||||
natToBin (S (j + j)) | even = bI (natToBin j)
|
||||
natToBin (S (S (j + j))) | odd ?= bO (natToBin (S j))
|
||||
|
@ -42,11 +42,11 @@ to a successor:
|
||||
|
||||
\begin{SaveVerbatim}{natdisjoint}
|
||||
|
||||
disjoint : (n : Nat) -> O = S n -> _|_
|
||||
disjoint : (n : Nat) -> Z = S n -> _|_
|
||||
disjoint n p = replace {P = disjointTy} p ()
|
||||
where
|
||||
disjointTy : Nat -> Type
|
||||
disjointTy O = ()
|
||||
disjointTy Z = ()
|
||||
disjointTy (S k) = _|_
|
||||
|
||||
\end{SaveVerbatim}
|
||||
@ -76,7 +76,7 @@ we want to prove the following theorem about the reduction behaviour of \texttt{
|
||||
|
||||
\begin{SaveVerbatim}{plusred}
|
||||
|
||||
plusReduces : (n:Nat) -> plus O n = n
|
||||
plusReduces : (n:Nat) -> plus Z n = n
|
||||
|
||||
\end{SaveVerbatim}
|
||||
\useverb{plusred}
|
||||
@ -90,7 +90,7 @@ of interest.
|
||||
|
||||
We won't go into details here, but the Curry-Howard
|
||||
correspondence~\cite{howard} explains this relationship.
|
||||
The proof itself is trivial, because \texttt{plus O n} normalises to \texttt{n}
|
||||
The proof itself is trivial, because \texttt{plus Z n} normalises to \texttt{n}
|
||||
by the definition of \texttt{plus}:
|
||||
|
||||
\begin{SaveVerbatim}{plusredp}
|
||||
@ -107,9 +107,9 @@ on the first argument to \texttt{plus}, namely \texttt{n}.
|
||||
|
||||
\begin{SaveVerbatim}{plusRedO}
|
||||
|
||||
plusReducesO : (n:Nat) -> n = plus n O
|
||||
plusReducesO O = refl
|
||||
plusReducesO (S k) = cong (plusReducesO k)
|
||||
plusReducesZ : (n:Nat) -> n = plus n Z
|
||||
plusReducesZ Z = refl
|
||||
plusReducesZ (S k) = cong (plusReducesZ k)
|
||||
|
||||
\end{SaveVerbatim}
|
||||
\useverb{plusRedO}
|
||||
@ -131,7 +131,7 @@ We can do the same for the reduction behaviour of plus on successors:
|
||||
\begin{SaveVerbatim}{plusRedS}
|
||||
|
||||
plusReducesS : (n:Nat) -> (m:Nat) -> S (plus n m) = plus n (S m)
|
||||
plusReducesS O m = refl
|
||||
plusReducesS Z m = refl
|
||||
plusReducesS (S k) m = cong (plusReducesS k m)
|
||||
|
||||
\end{SaveVerbatim}
|
||||
@ -148,16 +148,16 @@ therefore provides an interactive proof mode.
|
||||
Instead of writing the proof in one go, we can use \Idris{}'s interactive
|
||||
proof mode. To do this, we write the general \emph{structure} of the proof,
|
||||
and use the interactive mode to complete the details. We'll be constructing
|
||||
the proof by \emph{induction}, so we write the cases for \texttt{O} and
|
||||
the proof by \emph{induction}, so we write the cases for \texttt{Z} and
|
||||
\texttt{S}, with a recursive call in the \texttt{S} case giving the inductive
|
||||
hypothesis, and insert \emph{metavariables} for the rest of the definition:
|
||||
|
||||
\begin{SaveVerbatim}{prOstruct}
|
||||
|
||||
plusReducesO' : (n:Nat) -> n = plus n O
|
||||
plusReducesO' O = ?plusredO_O
|
||||
plusReducesO' (S k) = let ih = plusReducesO' k in
|
||||
?plusredO_S
|
||||
plusReducesZ' : (n:Nat) -> n = plus n Z
|
||||
plusReducesZ' Z = ?plusredZ_Z
|
||||
plusReducesZ' (S k) = let ih = plusReducesZ' k in
|
||||
?plusredZ_S
|
||||
|
||||
\end{SaveVerbatim}
|
||||
\useverb{prOstruct}
|
||||
@ -173,17 +173,17 @@ precisely, which functions exist but have no definitions), then the
|
||||
|
||||
*theorems> :m
|
||||
Global metavariables:
|
||||
[plusredO_S,plusredO_O]
|
||||
[plusredZ_S,plusredZ_Z]
|
||||
|
||||
\end{SaveVerbatim}
|
||||
|
||||
\begin{SaveVerbatim}{metatypes}
|
||||
|
||||
*theorems> :t plusredO_O
|
||||
plusredO_O : O = plus O O
|
||||
*theorems> :t plusredZ_Z
|
||||
plusredZ_Z : Z = plus Z Z
|
||||
|
||||
*theorems> :t plusredO_S
|
||||
plusredO_S : (k : Nat) -> (k = plus k O) -> S k = S (plus k O)
|
||||
*theorems> :t plusredZ_S
|
||||
plusredZ_S : (k : Nat) -> (k = plus k Z) -> S k = S (plus k Z)
|
||||
|
||||
\end{SaveVerbatim}
|
||||
\useverb{showmetas}
|
||||
@ -196,10 +196,10 @@ the missing definitions.
|
||||
|
||||
\begin{SaveVerbatim}{proveO}
|
||||
|
||||
*theorems> :p plusredO_O
|
||||
*theorems> :p plusredZ_Z
|
||||
|
||||
---------------------------------- (plusredO_O) --------
|
||||
{hole0} : O = plus O O
|
||||
---------------------------------- (plusredZ_Z) --------
|
||||
{hole0} : Z = plus Z Z
|
||||
|
||||
\end{SaveVerbatim}
|
||||
\useverb{proveO}
|
||||
@ -213,24 +213,24 @@ we can normalise the goal with the \texttt{compute} tactic:
|
||||
|
||||
\begin{SaveVerbatim}{compute}
|
||||
|
||||
-plusredO_O> compute
|
||||
-plusredZ_Z> compute
|
||||
|
||||
---------------------------------- (plusredO_O) --------
|
||||
{hole0} : O = O
|
||||
---------------------------------- (plusredZ_Z) --------
|
||||
{hole0} : Z = Z
|
||||
|
||||
\end{SaveVerbatim}
|
||||
\useverb{compute}
|
||||
|
||||
\noindent
|
||||
Now we have to prove that \texttt{O} equals \texttt{O}, which is easy to prove by
|
||||
Now we have to prove that \texttt{Z} equals \texttt{Z}, which is easy to prove by
|
||||
\texttt{refl}. To apply a function, such as \texttt{refl}, we use \texttt{refine}
|
||||
which introduces subgoals for each of the function's explicit arguments (\texttt{refl}
|
||||
has none):
|
||||
|
||||
\begin{SaveVerbatim}{refrefl}
|
||||
|
||||
-plusredO_O> refine refl
|
||||
plusredO_O: no more goals
|
||||
-plusredZ_Z> refine refl
|
||||
plusredZ_Z: no more goals
|
||||
|
||||
\end{SaveVerbatim}
|
||||
\useverb{refrefl}
|
||||
@ -244,8 +244,8 @@ This also outputs a trace of the proof:
|
||||
|
||||
\begin{SaveVerbatim}{prOprooftrace}
|
||||
|
||||
-plusredO_O> qed
|
||||
plusredO_O = proof {
|
||||
-plusredZ_Z> qed
|
||||
plusredZ_Z = proof {
|
||||
compute;
|
||||
refine refl;
|
||||
}
|
||||
@ -257,7 +257,7 @@ plusredO_O = proof {
|
||||
|
||||
*theorems> :m
|
||||
Global metavariables:
|
||||
[plusredO_S]
|
||||
[plusredZ_S]
|
||||
|
||||
\end{SaveVerbatim}
|
||||
\useverb{showmetasO}
|
||||
@ -269,10 +269,10 @@ Let us now prove the other required lemma, \texttt{plusredO\_S}:
|
||||
|
||||
\begin{SaveVerbatim}{plusredOSprf}
|
||||
|
||||
*theorems> :p plusredO_S
|
||||
*theorems> :p plusredZ_S
|
||||
|
||||
---------------------------------- (plusredO_S) --------
|
||||
{hole0} : (k : Nat) -> (k = plus k O) -> S k = S (plus k O)
|
||||
---------------------------------- (plusredZ_S) --------
|
||||
{hole0} : (k : Nat) -> (k = plus k Z) -> S k = S (plus k Z)
|
||||
|
||||
\end{SaveVerbatim}
|
||||
\useverb{plusredOSprf}
|
||||
@ -286,28 +286,28 @@ twice (or \texttt{intros}, which introduces all arguments as premisses). This gi
|
||||
\begin{SaveVerbatim}{prSintros}
|
||||
|
||||
k : Nat
|
||||
ih : k = plus k O
|
||||
---------------------------------- (plusredO_S) --------
|
||||
{hole2} : S k = S (plus k O)
|
||||
ih : k = plus k Z
|
||||
---------------------------------- (plusredZ_S) --------
|
||||
{hole2} : S k = S (plus k Z)
|
||||
|
||||
\end{SaveVerbatim}
|
||||
\useverb{prSintros}
|
||||
|
||||
\noindent
|
||||
We know, from the type of \texttt{ih}, that \texttt{k = plus k O}, so we would like to
|
||||
use this knowledge to replace \texttt{plus k O} in the goal with \texttt{k}. We can
|
||||
We know, from the type of \texttt{ih}, that \texttt{k = plus k Z}, so we would like to
|
||||
use this knowledge to replace \texttt{plus k Z} in the goal with \texttt{k}. We can
|
||||
achieve this with the \texttt{rewrite} tactic:
|
||||
|
||||
\begin{SaveVerbatim}{}
|
||||
|
||||
-plusredO_S> rewrite ih
|
||||
-plusredZ_S> rewrite ih
|
||||
|
||||
k : Nat
|
||||
ih : k = plus k O
|
||||
---------------------------------- (plusredO_S) --------
|
||||
ih : k = plus k Z
|
||||
---------------------------------- (plusredZ_S) --------
|
||||
{hole3} : S k = S k
|
||||
|
||||
-plusredO_S>
|
||||
-plusredZ_S>
|
||||
|
||||
\end{SaveVerbatim}
|
||||
\useverb{}
|
||||
@ -318,10 +318,10 @@ the goal using that proof. Here, it results in an equality which is trivially pr
|
||||
|
||||
\begin{SaveVerbatim}{prOStrace}
|
||||
|
||||
-plusredO_S> trivial
|
||||
plusredO_S: no more goals
|
||||
-plusredO_S> qed
|
||||
plusredO_S = proof {
|
||||
-plusredZ_S> trivial
|
||||
plusredZ_S: no more goals
|
||||
-plusredZ_S> qed
|
||||
plusredZ_S = proof {
|
||||
intros;
|
||||
rewrite ih;
|
||||
trivial;
|
||||
|
@ -81,7 +81,7 @@ syntax. Natural numbers and lists, for example, can be declared as follows:
|
||||
|
||||
\begin{SaveVerbatim}{natlist}
|
||||
|
||||
data Nat = O | S Nat -- Natural numbers
|
||||
data Nat = Z | S Nat -- Natural numbers
|
||||
-- (zero and successor)
|
||||
data List a = Nil | (::) a (List a) -- Polymorphic lists
|
||||
|
||||
@ -90,7 +90,7 @@ data List a = Nil | (::) a (List a) -- Polymorphic lists
|
||||
|
||||
\noindent
|
||||
The above declarations are taken from the standard library. Unary natural
|
||||
numbers can be either zero (\texttt{O} - that's a capital letter 'o', not the digit), or
|
||||
numbers can be either zero (\texttt{Z}), or
|
||||
the successor of another natural number (\texttt{S k}).
|
||||
Lists can either be empty (\texttt{Nil})
|
||||
or a value added to the front of another list (\texttt{x :: xs}).
|
||||
@ -132,12 +132,12 @@ defined as follows, again taken from the standard library:
|
||||
|
||||
-- Unary addition
|
||||
plus : Nat -> Nat -> Nat
|
||||
plus O y = y
|
||||
plus Z y = y
|
||||
plus (S k) y = S (plus k y)
|
||||
|
||||
-- Unary multiplication
|
||||
mult : Nat -> Nat -> Nat
|
||||
mult O y = O
|
||||
mult Z y = Z
|
||||
mult (S k) y = plus y (mult k y)
|
||||
|
||||
\end{SaveVerbatim}
|
||||
@ -148,7 +148,7 @@ The standard arithmetic operators \texttt{+} and \texttt{*} are also overloaded
|
||||
for use by \texttt{Nat}, and are implemented
|
||||
using the above functions. Unlike Haskell, there is no restriction on whether
|
||||
types and function names must begin with a capital letter or not. Function
|
||||
names (\tFN{plus} and \tFN{mult} above), data constructors (\tDC{O}, \tDC{S},
|
||||
names (\tFN{plus} and \tFN{mult} above), data constructors (\tDC{Z}, \tDC{S},
|
||||
\tDC{Nil} and \tDC{::}) and type constructors (\tTC{Nat} and \tTC{List}) are
|
||||
all part of the same namespace.
|
||||
|
||||
@ -156,10 +156,10 @@ We can test these functions at the \Idris{} prompt:
|
||||
|
||||
\begin{SaveVerbatim}{fntest}
|
||||
|
||||
Idris> plus (S (S O)) (S (S O))
|
||||
S (S (S (S O))) : Nat
|
||||
Idris> mult (S (S (S O))) (plus (S (S O)) (S (S O)))
|
||||
S (S (S (S (S (S (S (S (S (S (S (S O))))))))))) : Nat
|
||||
Idris> plus (S (S Z)) (S (S Z))
|
||||
S (S (S (S Z))) : Nat
|
||||
Idris> mult (S (S (S Z))) (plus (S (S Z)) (S (S Z)))
|
||||
S (S (S (S (S (S (S (S (S (S (S (S Z))))))))))) : Nat
|
||||
|
||||
\end{SaveVerbatim}
|
||||
\useverb{fntest}
|
||||
@ -171,9 +171,9 @@ meaning that we can also test the functions as follows:
|
||||
\begin{SaveVerbatim}{fntest}
|
||||
|
||||
Idris> plus 2 2
|
||||
S (S (S (S O))) : Nat
|
||||
S (S (S (S Z))) : Nat
|
||||
Idris> mult 3 (plus 2 2)
|
||||
S (S (S (S (S (S (S (S (S (S (S (S O))))))))))) : Nat
|
||||
S (S (S (S (S (S (S (S (S (S (S (S Z))))))))))) : Nat
|
||||
|
||||
\end{SaveVerbatim}
|
||||
\useverb{fntest}
|
||||
@ -252,13 +252,13 @@ So, for example, the following definitions are legal:
|
||||
\begin{SaveVerbatim}{whereinfer}
|
||||
|
||||
even : Nat -> Bool
|
||||
even O = True
|
||||
even Z = True
|
||||
even (S k) = odd k where
|
||||
odd O = False
|
||||
odd Z = False
|
||||
odd (S k) = even k
|
||||
|
||||
test : List Nat
|
||||
test = [c (S 1), c O, d (S O)]
|
||||
test = [c (S 1), c Z, d (S Z)]
|
||||
where c x = 42 + x
|
||||
d y = c (y + 1 + z y)
|
||||
where z w = y + w
|
||||
@ -278,7 +278,7 @@ we declare vectors as follows:
|
||||
\begin{SaveVerbatim}{vect}
|
||||
|
||||
data Vect : Type -> Nat -> Type where
|
||||
Nil : Vect a O
|
||||
Nil : Vect a Z
|
||||
(::) : a -> Vect a k -> Vect a (S k)
|
||||
|
||||
\end{SaveVerbatim}
|
||||
@ -371,7 +371,7 @@ data Fin : Nat -> Type where
|
||||
\texttt{n+1}th element of a finite set with \texttt{S k} elements.
|
||||
\tTC{Fin} is indexed by a \tTC{Nat}, which
|
||||
represents the number of elements in the set. Obviously we can't construct an
|
||||
element of an empty set, so neither constructor targets \texttt{Fin O}.
|
||||
element of an empty set, so neither constructor targets \texttt{Fin Z}.
|
||||
|
||||
A useful application of the \tTC{Fin} family is to represent bounded
|
||||
natural numbers. Since the first \tTC{n} natural numbers form a finite
|
||||
@ -397,10 +397,10 @@ need for a run-time bounds check. The type checker guarantees that the location
|
||||
is no larger than the length of the vector.
|
||||
|
||||
Note also that there is no case for \texttt{Nil} here. This is because it is
|
||||
impossible. Since there is no element of \texttt{Fin O}, and the location is a
|
||||
\texttt{Fin n}, then \texttt{n} can not be \tDC{O}. As a result, attempting to
|
||||
impossible. Since there is no element of \texttt{Fin Z}, and the location is a
|
||||
\texttt{Fin n}, then \texttt{n} can not be \tDC{Z}. As a result, attempting to
|
||||
look up an element in an empty vector would give a compile time type error,
|
||||
since it would force \texttt{n} to be \tDC{O}.
|
||||
since it would force \texttt{n} to be \tDC{Z}.
|
||||
|
||||
\subsubsection{Implicit Arguments}
|
||||
|
||||
@ -520,11 +520,11 @@ data types and functions to be defined simultaneously:
|
||||
|
||||
mutual
|
||||
even : Nat -> Bool
|
||||
even O = True
|
||||
even Z = True
|
||||
even (S k) = odd k
|
||||
|
||||
odd : Nat -> Bool
|
||||
odd O = False
|
||||
odd Z = False
|
||||
odd (S k) = even k
|
||||
|
||||
\end{SaveVerbatim}
|
||||
@ -663,7 +663,7 @@ We have already seen the \texttt{List} and \texttt{Vect} data types:
|
||||
data List a = Nil | (::) a (List a)
|
||||
|
||||
data Vect : Type -> Nat -> Type where
|
||||
Nil : Vect a O
|
||||
Nil : Vect a Z
|
||||
(::) : a -> Vect a k -> Vect a (S k)
|
||||
|
||||
\end{SaveVerbatim}
|
||||
@ -787,7 +787,7 @@ bounds error:
|
||||
|
||||
list_lookup : Nat -> List a -> Maybe a
|
||||
list_lookup _ Nil = Nothing
|
||||
list_lookup O (x :: xs) = Just x
|
||||
list_lookup Z (x :: xs) = Just x
|
||||
list_lookup (S k) (x :: xs) = list_lookup k xs
|
||||
|
||||
\end{SaveVerbatim}
|
||||
|
@ -10,7 +10,7 @@ determined by whether the vector was empty or not:
|
||||
\begin{SaveVerbatim}{appdep}
|
||||
|
||||
(++) : Vect a n -> Vect a m -> Vect a (n + m)
|
||||
(++) {n=O} [] ys = ys
|
||||
(++) {n=Z} [] ys = ys
|
||||
(++) {n=S k} (x :: xs) ys = x :: xs ++ ys
|
||||
|
||||
\end{SaveVerbatim}
|
||||
@ -83,7 +83,7 @@ to write a function which converts a natural number to a list of binary digits
|
||||
\begin{SaveVerbatim}{natToBin}
|
||||
|
||||
natToBin : Nat -> List Bool
|
||||
natToBin O = Nil
|
||||
natToBin Z = Nil
|
||||
natToBin k with (parity k)
|
||||
natToBin (j + j) | even = False :: natToBin j
|
||||
natToBin (S (j + j)) | odd = True :: natToBin j
|
||||
|
Loading…
Reference in New Issue
Block a user