Add more parity proofs and some commentary

This commit is contained in:
Nick Drozd 2020-02-25 17:58:57 -06:00
parent 7ecd2ff576
commit b72dfc98b4

View File

@ -2,18 +2,9 @@ module Data.Nat.Parity
%access public export
--------------------------------------------------------------------------------
-- Parity
--------------------------------------------------------------------------------
----------------------------------------
mutual
even : Nat -> Bool
even Z = True
even (S k) = odd k
odd : Nat -> Bool
odd Z = False
odd (S k) = even k
-- Type-level, constructive definitions of parity.
||| A nat is Even when it is twice some other nat.
Even : Nat -> Type
@ -23,6 +14,8 @@ Even n = (half : Nat ** n = half * 2)
Odd : Nat -> Type
Odd n = (haf : Nat ** n = S $ haf * 2)
----------------------------------------
||| Two more than an Even is Even.
add2Even : Even n -> Even (2 + n)
add2Even (half ** pf) = (S half ** cong {f = (+) 2} pf)
@ -52,6 +45,59 @@ succDoublePredPred {k = S _} prf = cong {f = Nat.pred} prf
predEvenOdd : Even (S n) -> Odd n
predEvenOdd (half ** pf) = (pred half ** succDoublePredPred pf)
----------------------------------------
-- Boolean definitions of parity.
mutual
even : Nat -> Bool
even Z = True
even (S k) = odd k
odd : Nat -> Bool
odd Z = False
odd (S k) = even k
----------------------------------------
-- The boolean and type-level definitions are equivalent in the sense
-- that a proof of one can be gotten from a proof of the other.
mutual
||| Evens are even.
evenEven : Even n -> even n = True
evenEven {n = Z} _ = Refl
evenEven {n = S _} pf = oddOdd $ predEvenOdd pf
||| Odds are odd.
oddOdd : Odd n -> odd n = True
oddOdd {n = Z} (_ ** pf) = absurd pf
oddOdd {n = S _} pf = evenEven $ predOddEven pf
mutual
||| If it's even, it's Even.
evenEvenConverse : even n = True -> Even n
evenEvenConverse {n = Z} prf = (0 ** Refl)
evenEvenConverse {n = S k} prf =
let (haf ** pf) = oddOddConverse prf in
(S haf ** cong pf)
||| If it's odd, it's Odd
oddOddConverse : odd n = True -> Odd n
oddOddConverse {n = Z} prf = absurd prf
oddOddConverse {n = S k} prf =
let (half ** pf) = evenEvenConverse prf in
(half ** cong pf)
----------------------------------------
||| Every nat is either even or odd.
evenorodd : (n : Nat) -> Either (even n = True) (odd n = True)
evenorodd Z = Left Refl
evenorodd (S k) = case evenorodd k of
Left l => Right l
Right r => Left r
||| Every nat is either Even or Odd.
evenOrOdd : (n : Nat) -> Either (Even n) (Odd n)
evenOrOdd Z = Left (0 ** Refl)
@ -59,6 +105,11 @@ evenOrOdd (S k) = case evenOrOdd k of
Left (half ** pf) => Right (half ** cong {f = S} pf)
Right (haf ** pf) => Left (S haf ** cong {f = S} pf)
||| No nat is both even and odd.
notevenandodd : even n = True -> odd n = True -> Void
notevenandodd {n = Z} en on = absurd on
notevenandodd {n = S _} en on = notevenandodd on en
||| No nat is both Even and Odd.
notEvenAndOdd : Even n -> Odd n -> Void
notEvenAndOdd {n = Z} _ (_ ** odd) = absurd odd
@ -79,16 +130,7 @@ oddDec n = case evenOrOdd n of
Left even => No $ notEvenAndOdd even
Right odd => Yes odd
mutual
||| Evens are even.
evenEven : Even n -> even n = True
evenEven {n = Z} _ = Refl
evenEven {n = S _} pf = oddOdd $ predEvenOdd pf
||| Odds are odd.
oddOdd : Odd n -> odd n = True
oddOdd {n = Z} (_ ** pf) = absurd pf
oddOdd {n = S _} pf = evenEven $ predOddEven pf
----------------------------------------
||| Even plus Even is Even.
evenPlusEven : Even j -> Even k -> Even (j + k)