
Programming in IDRIS: A Tutorial

The IDRIS Community

28th November 2013

Contents

1 Introduction 3
1.1 Intended Audience . 3
1.2 Example Code . 3

2 Getting Started 3
2.1 Prerequisites . 3
2.2 Downloading and Installing . 4
2.3 The Interactive Environment . 4

3 Types and Functions 6
3.1 Primitive Types . 6
3.2 Data Types . 6
3.3 Functions . 7
3.4 Dependent Types . 8

3.4.1 Vectors . 8
3.4.2 The Finite Sets . 9
3.4.3 Implicit Arguments . 10
3.4.4 “using” notation . 10

3.5 I/O . 11
3.6 “do” notation . 12
3.7 Useful Data Types . 12

3.7.1 List and Vect . 12
3.7.2 Maybe . 13
3.7.3 Tuples and Dependent Pairs . 14

3.8 so . 15
3.9 More Expressions . 15
3.10 Dependent Records . 16

4 Type Classes 17
4.1 Default Definitions . 18
4.2 Extending Classes . 19
4.3 Monads and do-notation . 19
4.4 Idiom brackets . 20

4.4.1 An error-handling interpreter . 21
4.5 Named Instances . 22

1

5 Modules and Namespaces 23
5.1 Export Modifiers . 24
5.2 Explicit Namespaces . 24
5.3 Parameterised blocks . 25

6 Example: The Well-Typed Interpreter 25
6.1 Unit testing . 29

7 Views and the “with” rule 29
7.1 Dependent pattern matching . 29
7.2 The with rule — matching intermediate values . 29

8 Theorem Proving 30
8.1 Equality . 30
8.2 The Empty Type . 31
8.3 Simple Theorems . 31
8.4 Interactive theorem proving . 32
8.5 Totality Checking . 34

8.5.1 Directives and Compiler Flags for Totality . 34

9 Provisional Definitions 35
9.1 Provisional definitions . 35
9.2 Suspension of Disbelief . 37
9.3 Example: Binary numbers . 37

10 Syntax Extensions 38
10.1 syntax rules . 38
10.2 dsl notation . 39

11 Miscellany 40
11.1 Auto implicit arguments . 41
11.2 Implicit conversions . 41
11.3 Literate programming . 42
11.4 Foreign function calls . 42
11.5 Type Providers . 43
11.6 JavaScript Target . 44
11.7 Cumulativity . 46

12 Further Reading 46

2

1 Introduction

In conventional programming languages, there is a clear distinction between types and values. For example,
in Haskell [9], the following are types, representing integers, characters, lists of characters, and lists of any
value respectively:

• Int, Char, [Char], [a]

Correspondingly, the following values are examples of inhabitants of those types:

• 42, ’a’, "Hello world!", [2,3,4,5,6]

In a language with dependent types, however, the distinction is less clear. Dependent types allow types to
“depend” on values — in other words, types are a first class language construct and can be manipulated like
any other value. The standard example is the type of lists of a given length1, Vect n a, where a is the
element type and n is the length of the list and can be an arbitrary term.

When types can contain values, and where those values describe properties (e.g. the length of a list) the
type of a function can begin to describe its own properties. For example, concatenating two lists has the
property that the resulting list’s length is the sum of the lengths of the two input lists. We can therefore give
the following type to the app function, which concatenates vectors:

app : Vect n a -> Vect m a -> Vect (n + m) a

This tutorial introduces IDRIS, a general purpose functional programming language with dependent types.
The goal of the IDRIS project is to build a dependently typed language suitable for verifiable systems
programming. To this end, IDRIS is a compiled language which aims to generate efficient executable code. It
also has a lightweight foreign function interface which allows easy interaction with external C libraries.

1.1 Intended Audience

This tutorial is intended as a brief introduction to the language, and is aimed at readers already familiar with
a functional language such as Haskell2 or OCaml3. In particular, a certain amount of familiarity with Haskell
syntax is assumed, although most concepts will at least be explained briefly. The reader is also assumed to
have some interest in using dependent types for writing and verifying systems software.

1.2 Example Code

This tutorial includes some example code, which has been tested with IDRIS version 0.9.10. The files are
available in the IDRIS distribution, and provided along side the tutorial source, so that you can try them
out easily, under tutorial/examples. However, it is strongly recommended that you can type them in
yourself, rather than simply loading and reading them.

2 Getting Started

2.1 Prerequisites

Before installing IDRIS, you will need to make sure you have all of the necessary libraries and tools. You will
need:

• A fairly recent Haskell platform. Version 2010.1.0.0.1 is currently sufficiently recent.

• The GNU Multiple Precision Arithmetic Library (GMP) is available from MacPorts and all major Linux
distributions.

1Typically, and perhaps confusingly, referred to in the dependently typed programming literature as “vectors”
2http://www.haskell.org
3http://ocaml.org

3

http://www.haskell.org
http://ocaml.org

2.2 Downloading and Installing

The easiest way to install IDRIS, if you have all of the prerequisites, is to type:

cabal update; cabal install idris

This will install the latest version released on Hackage, along with any dependencies. If, however, you
would like the most up to date development version, you can find it on GitHub at: https://github.com/
edwinb/Idris-dev.

To check that installation has succeeded, and to write your first IDRIS program, create a file called
“hello.idr” containing the following text:

module Main

main : IO ()
main = putStrLn "Hello world"

If you are familiar with Haskell, it should be fairly clear what the program is doing and how it works, but
if not, we will explain the details later. You can compile the program to an executable by entering idris
hello.idr -o hello at the shell prompt. This will create an executable called hello, which you can
run:

$ idris hello.idr -o hello
$./hello
Hello world

Note that the $ indicates the shell prompt! Some useful options to the IDRIS command are:

• -o prog to compile to an executable called prog.

• -check type check the file and its dependencies without starting the interactive environment.

• -help display usage summary and command line options

2.3 The Interactive Environment

Entering idris at the shell prompt starts up the interactive environment. You should see something like the
following:

$ idris
____ __ _
/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.10

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Idris>

This gives a ghci-style interface which allows evaluation of, as well as type checking of, expressions;
theorem proving, compilation; editing; and various other operations. The command :? gives a list of
supported commands, as shown in Listing 1. Listing 2 shows an example run in which hello.idr is
loaded, the type of main is checked and then the program is compiled to the executable hello.

Listing 1: Interactive environment commands
Idris version 0.9.10

4

https://github.com/edwinb/Idris-dev
https://github.com/edwinb/Idris-dev

Command Arguments Purpose

<expr> Evaluate an expression
:t <expr> Check the type of an expression
:miss :missing <name> Show missing clauses
:doc <name> Show internal documentation
:i :info <name> Display information about a type class
:total <name> Check the totality of a name
:r :reload Reload current file
:l :load <filename> Load a new file
:cd <filename> Change working directory
:m :module <module> Import an extra module
:e :edit Edit current file using $EDITOR or $VISUAL
:m :metavars <metavar> Show remaining proof obligations (metavariables)
:p :prove <metavar> Prove a metavariable
:a :addproof <name> Add proof to source file
:rmproof <name> Remove proof from proof stack
:showproof <name> Show proof
:proofs Show available proofs
:x <expr> Execute IO actions resulting from an expression

using the interpreter
:c :compile <filename> Compile to an executable <filename>
:js :javascript <filename> Compile to JavaScript <filename>
:exec :execute Compile to an executable and run
:dynamic <filename> Dynamically load a C library (similar to %dynamic)
:dynamic List dynamically loaded C libraries
:? :h :help Display this help text
:set <option> Set an option (errorcontext, showimplicits)
:unset <option> Unset an option
:colour :color <option> Turn REPL colours on or off; set a specific colour
:q :quit Exit the Idris system

Listing 2: Sample Interactive Run
$ idris hello.idr

____ __ _
/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.10

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Type checking ./hello.idr

*hello> :t main
main : IO ()

*hello> :c hello

*hello> :q
Bye bye
$./hello
Hello world

Type checking a file, if successful, creates a bytecode version of the file (in this case hello.ibc) to speed up
loading in future. The bytecode is regenerated if the source file changes.

5

3 Types and Functions

3.1 Primitive Types

IDRIS defines several primitive types: Int, Integer and Float for numeric operations, Char and String
for text manipulation, and Ptr which represents foreign pointers. There are also several data types declared
in the library, including Bool, with values True and False. We can declare some constants with these
types. Enter the following into a file prims.idr and load it into the IDRIS interactive environment by
typing idris prims.idr:

module prims

x : Int
x = 42

foo : String
foo = "Sausage machine"

bar : Char
bar = ’Z’

quux : Bool
quux = False

An IDRIS file consists of an optional module declaration (here module prims) followed by an optional list
of imports (none here, however IDRIS programs can consist of several modules, and the definitions in each
module each have their own namespace, as we will discuss in Section 5) and a collection of declarations
and definitions. The order of definitions is significant — functions and data types must be defined before
use. Each definition must have a type declaration, for example see x : Int, foo : String, from the
above listing. Indentation is significant — a new declaration begins at the same level of indentation as the
preceding declaration. Alternatively, declarations may be terminated with a semicolon.

A library module prelude is automatically imported by every IDRIS program, including facilities for
IO, arithmetic, data structures and various common functions. The prelude defines several arithmetic and
comparison operators, which we can use at the prompt. Evaluating things at the prompt gives an answer,
and the type of the answer. For example:

*prims> 6*6+6
42 : Int

*prims> x == 6*6+6
True : Bool

All of the usual arithmetic and comparison operators are defined for the primitive types. They are overloaded
using type classes, as we will discuss in Section 4 and can be extended to work on user defined types. Boolean
expressions can be tested with the if...then...else construct:

*prims> if x == 6 * 6 + 6 then "The answer!" else "Not the answer"
"The answer!" : String

3.2 Data Types

Data types are declared in a similar way to Haskell data types, with a similar syntax. Natural numbers and
lists, for example, can be declared as follows:

data Nat = Z | S Nat −− N a t u r a l n u m b e r s

−− (z e r o a n d s u c c e s s o r)

6

data List a = Nil | (::) a (List a) −− P o l y m o r p h i c l i s t s

The above declarations are taken from the standard library. Unary natural numbers can be either zero (Z), or
the successor of another natural number (S k). Lists can either be empty (Nil) or a value added to the front
of another list (x :: xs). In the declaration for List, we used an infix operator ::. New operators such
as this can be added using a fixity declaration, as follows:

infixr 10 ::

Functions, data constructors and type constructors may all be given infix operators as names. They may be
used in prefix form if enclosed in brackets, e.g. (::). Infix operators can use any of the symbols:

:+-*/=_.?|&><!@$%^~.

3.3 Functions

Functions are implemented by pattern matching, again using a similar syntax to Haskell. The main difference
is that IDRIS requires type declarations for all functions, using a single colon : (rather than Haskell’s double
colon ::). Some natural number arithmetic functions can be defined as follows, again taken from the
standard library:

−− U n a r y a d d i t i o n

plus : Nat -> Nat -> Nat
plus Z y = y
plus (S k) y = S (plus k y)

−− U n a r y m u l t i p l i c a t i o n

mult : Nat -> Nat -> Nat
mult Z y = Z
mult (S k) y = plus y (mult k y)

The standard arithmetic operators + and * are also overloaded for use by Nat, and are implemented using
the above functions. Unlike Haskell, there is no restriction on whether types and function names must begin
with a capital letter or not. Function names (plus and mult above), data constructors (Z, S, Nil and ::)
and type constructors (Nat and List) are all part of the same namespace.

We can test these functions at the IDRIS prompt:

Idris> plus (S (S Z)) (S (S Z))
S (S (S (S Z))) : Nat
Idris> mult (S (S (S Z))) (plus (S (S Z)) (S (S Z)))
S (S (S (S (S (S (S (S (S (S (S (S Z))))))))))) : Nat

Like arithmetic operations, integer literals are also overloaded using type classes, meaning that we can also
test the functions as follows:

Idris> plus 2 2
S (S (S (S Z))) : Nat
Idris> mult 3 (plus 2 2)
S (S (S (S (S (S (S (S (S (S (S (S Z))))))))))) : Nat

You may wonder, by the way, why we have unary natural numbers when our computers have perfectly good
integer arithmetic built in. The reason is primarily that unary numbers have a very convenient structure
which is easy to reason about, and easy to relate to other data structures as we will see later. Nevertheless,
we do not want this convenience to be at the expense of efficiency. Fortunately, IDRIS knows about the
relationship between Nat (and similarly structured types) and numbers, so optimises the representation and
functions such as plus and mult.

7

where clauses

Functions can also be defined locally using where clauses. For example, to define a function which reverses
a list, we can use an auxiliary function which accumulates the new, reversed list, and which does not need to
be visible globally:

reverse : List a -> List a
reverse xs = revAcc [] xs where

revAcc : List a -> List a -> List a
revAcc acc [] = acc
revAcc acc (x :: xs) = revAcc (x :: acc) xs

Indentation is significant — functions in the where block must be indented further than the outer function.
Scope: Any names which are visible in the outer scope are also visible in the where clause (unless they

have been redefined, such as xs here). A name which appears only in the type will be in scope in the where
clause if it is a parameter to one of the types, i.e. it is fixed across the entire structure.

As well as functions, where blocks can include local data declarations, such as the following where MyLT
is not accessible outside the definition of foo:

foo : Int -> Int
foo x = case isLT of

Yes => x*2
No => x*4

where
data MyLT = Yes | No

isLT : MyLT
isLT = if x < 20 then Yes else No

In general, functions defined in a where clause need a type declaration just like any top level function.
However, the type declaration for a function f can be omitted if:

• f appears in the right hand side of the top level definition

• The type of f can be completely determined from its first application

So, for example, the following definitions are legal:

even : Nat -> Bool
even Z = True
even (S k) = odd k where
odd Z = False
odd (S k) = even k

test : List Nat
test = [c (S 1), c Z, d (S Z)]

where c x = 42 + x
d y = c (y + 1 + z y)

where z w = y + w

3.4 Dependent Types

3.4.1 Vectors

A standard example of a dependent type is the type of “lists with length”, conventionally called vectors in
the dependent type literature. In IDRIS, we declare vectors as follows4:

4Note that prior to IDRIS 0.9.9, the order of the arguments to Vect was reversed.

8

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Note that we have used the same constructor names as for List. Ad-hoc name overloading such as this is
accepted by IDRIS, provided that the names are declared in different namespaces (in practice, normally in
different modules). Ambiguous constructor names can normally be resolved from context.

This declares a family of types, and so the form of the declaration is rather different from the simple
type declarations above. We explicitly state the type of the type constructor Vect — it takes a Nat and a
type as an argument, where Type stands for the type of types. We say that Vect is indexed over Nat and
parameterised by Type. Each constructor targets a different part of the family of types. Nil can only be used
to construct vectors with zero length, and :: to construct vectors with non-zero length. In the type of ::,
we state explicitly that an element of type a and a tail of type Vect k a (i.e., a vector of length k) combine
to make a vector of length S k.

We can define functions on dependent types such as Vect in the same way as on simple types such as
List and Nat above, by pattern matching. The type of a function over Vect will describe what happens to
the lengths of the vectors involved. For example, ++, defined in the library, appends two Vects:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ ys

The type of (++) states that the resulting vector’s length will be the sum of the input lengths. If we get the
definition wrong in such a way that this does not hold, IDRIS will not accept the definition. For example:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ xs −− BROKEN

$ idris vbroken.idr --check
vbroken.idr:3:Can’t unify Vect n a with Vect m a

Specifically:
Can’t unify n with m

This error message suggests that there is a length mismatch between two vectors — we needed a vector of
length m, but provided a vector of length n.

3.4.2 The Finite Sets

Finite sets, as the name suggests, are sets with a finite number of elements. They are declared as follows
(again, in the prelude):

data Fin : Nat -> Type where
fZ : Fin (S k)
fS : Fin k -> Fin (S k)

fZ is the zeroth element of a finite set with S k elements; fS n is the n+1th element of a finite set with S k
elements. Fin is indexed by a Nat, which represents the number of elements in the set. Obviously we can’t
construct an element of an empty set, so neither constructor targets Fin Z.

A useful application of the Fin family is to represent bounded natural numbers. Since the first n natural
numbers form a finite set of n elements, we can treat Fin n as the set of natural numbers bounded by n.

For example, the following function which looks up an element in a Vect, by a bounded index given as
a Fin n, is defined in the prelude:

9

index : Fin n -> Vect n a -> a
index fZ (x :: xs) = x
index (fS k) (x :: xs) = index k xs

This function looks up a value at a given location in a vector. The location is bounded by the length of the
vector (n in each case), so there is no need for a run-time bounds check. The type checker guarantees that the
location is no larger than the length of the vector.

Note also that there is no case for Nil here. This is because it is impossible. Since there is no element of
Fin Z, and the location is a Fin n, then n can not be Z. As a result, attempting to look up an element in an
empty vector would give a compile time type error, since it would force n to be Z.

3.4.3 Implicit Arguments

Let us take a closer look at the type of index:

index : Fin n -> Vect n a -> a

It takes two arguments, an element of the finite set of n elements, and a vector with n elements of type a. But
there are also two names, n and a, which are not declared explicitly. These are implicit arguments to index.
We could also write the type of index as:

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

Implicit arguments, given in braces {} in the type declaration, are not given in applications of index; their
values can be inferred from the types of the Fin n and Vect n a arguments. Any name with a lower case
initial letter which appears as a parameter or index in a type declaration, but which is otherwise free, will be
automatically bound as an implicit argument. Implicit arguments can still be given explicitly in applications,
using {a=value} and {n=value}, for example:

index {a=Int} {n=2} fZ (2 :: 3 :: Nil)

In fact, any argument, implicit or explicit, may be given a name. We could have declared the type of index
as:

index : (i:Fin n) -> (xs:Vect n a) -> a

It is a matter of taste whether you want to do this — sometimes it can help document a function by making
the purpose of an argument more clear.

3.4.4 “using” notation

Sometimes it is necessary to provide types of implicit arguments where the type checker can not work
them out itself. This can happen if there is a dependency ordering — obviously, a and n must be given as
arguments above before being used — or if an implicit argument has a complex type. For example, we will
need to state the types of the implicit arguments in the following definition, which defines a predicate on
vectors:

data Elem : a -> Vect n a -> Type where
here : {x:a} -> {xs:Vect n a} -> Elem x (x :: xs)
there : {x,y:a} -> {xs:Vect n a} -> Elem x xs -> Elem x (y :: xs)

An instance of Elem x xs states that x is an element of xs. We can construct such a predicate if the required
element is here, at the head of the vector, or there, in the tail of the vector. For example:

testVec : Vect 4 Int testVec = 3 :: 4 :: 5 :: 6 :: Nil

inVect : Elem 5 testVec
inVect = there (there here)

10

If the same implicit arguments are being used a lot, it can make a definition difficult to read. To avoid this
problem, a using block gives the types and ordering of any implicit arguments which can appear within
the block:

using (x:a, y:a, xs:Vect n a)
data Elem : a -> Vect n a -> Type where

here : Elem x (x :: xs)
there : Elem x xs -> Elem x (y :: xs)

Note: Declaration Order and mutual blocks

In general, functions and data types must be defined before use, since dependent types allow functions to
appear as part of types, and their reduction behaviour to affect type checking. However, this restriction can
be relaxed by using a mutual block, which allows data types and functions to be defined simultaneously:

mutual
even : Nat -> Bool
even Z = True
even (S k) = odd k

odd : Nat -> Bool
odd Z = False
odd (S k) = even k

In a mutual block, first all of the type declarations are added, then the function bodies. As a result, none of
the function types can depend on the reduction behaviour of any of the functions in the block.

3.5 I/O

Computer programs are of little use if they do not interact with the user or the system in some way. The
difficulty in a pure language such as IDRIS — that is, a language where expressions do not have side-effects —
is that I/O is inherently side-effecting. Therefore in IDRIS, such interactions are encapsulated in the type IO:

data IO a −− I O o p e r a t i o n r e t u r n i n g a v a l u e o f t y p e a

We’ll leave the definition of IO abstract, but effectively it describes what the I/O operations to be executed
are, rather than how to execute them. The resulting operations are executed externally, by the run-time
system. We’ve already seen one IO program:

main : IO ()
main = putStrLn "Hello world"

The type of putStrLn explains that it takes a string, and returns an element of the unit type () via an I/O
action. There is a variant putStr which outputs a string without a newline:

putStrLn : String -> IO ()
putStr : String -> IO ()

We can also read strings from user input:

getLine : IO String

A number of other I/O operations are defined in the prelude, for example for reading and writing files,
including:

data File −− a b s t r a c t

data Mode = Read | Write | ReadWrite

11

openFile : String -> Mode -> IO File
closeFile : File -> IO ()

fread : File -> IO String
fwrite : File -> String -> IO ()
feof : File -> IO Bool

readFile : String -> IO String

3.6 “do” notation

I/O programs will typically need to sequence actions, feeding the output of one computation into the input
of the next. IO is an abstract type, however, so we can’t access the result of a computation directly. Instead,
we sequence operations with do notation:

greet : IO ()
greet = do putStr "What is your name? "

name <- getLine
putStrLn ("Hello " ++ name)

The syntax x <- iovalue executes the I/O operation iovalue, of type IO a, and puts the result, of type
a into the variable x. In this case, getLine returns an IO String, so name has type String. Indentation
is significant — each statement in the do block must begin in the same column. The return operation
allows us to inject a value directly into an IO operation:

return : a -> IO a

As we will see later, do notation is more general than this, and can be overloaded.

3.7 Useful Data Types

IDRIS includes a number of useful data types and library functions (see the libs/ directory in the distribu-
tion). This chapter describes a few of these. The functions described here are imported automatically by
every IDRIS program, as part of Prelude.idr.

3.7.1 List and Vect

We have already seen the List and Vect data types:

data List a = Nil | (::) a (List a)

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Note that the constructor names are the same for each — constructor names (in fact, names in general) can
be overloaded, provided that they are declared in different namespaces (see Section 5), and will typically be
resolved according to their type. As syntactic sugar, any type with the constructor names Nil and :: can be
written in list form. For example:

• [] means Nil

• [1,2,3] means 1 :: 2 :: 3 :: Nil

12

The library also defines a number of functions for manipulating these types. map is overloaded both for
List and Vect and applies a function to every element of the list or vector.

map : (a -> b) -> List a -> List b
map f [] = []
map f (x :: xs) = f x :: map f xs

map : (a -> b) -> Vect n a -> Vect n b
map f [] = []
map f (x :: xs) = f x :: map f xs

For example, to double every element in a vector of integers:

intVec : Vect 5 Int
intVec = [1, 2, 3, 4, 5]

double : Int -> Int
double x = x * 2

You’ll find these examples in usefultypes.idr in the examples/ directory:

*usefultypes> show (map double intVec)
"[2, 4, 6, 8, 10]" : String

For more details of the functions available on List and Vect, look in the library, in libs/prelude/list.idr
and libs/prelude/vect.idr respectively. Functions include filtering, appending, reversing, and so on.
Also remember that IDRIS is still in development, so if you don’t see the function you need, please feel free
to add it and submit a patch!

Aside: Anonymous functions and operator sections

There are actually neater ways to write the above expression. One way would be to use an anonymous
function:

*usefultypes> show (map (\x => x * 2) intVec)
"[2, 4, 6, 8, 10]" : String

The notation \x => val constructs an anonymous function which takes one argument, x and returns the
expression val. Anonymous functions may take several arguments, separated by commas, e.g. \x, y, z
=> val. Arguments may also be given explicit types, e.g. \x : Int => x * 2, and can pattern match,
e.g. \ (x, y) => x + y. We could also use an operator section:

usefultypes> show (map (2) intVec)
"[2, 4, 6, 8, 10]" : String

(*2) is shorthand for a function which multiplies a number by 2. It expands to \x => x * 2. Similarly,
(2*) would expand to \x => 2 * x.

3.7.2 Maybe

Maybe describes an optional value. Either there is a value of the given type, or there isn’t:

data Maybe a = Just a | Nothing

Maybe is one way of giving a type to an operation that may fail. For example, looking something up in a
List (rather than a vector) may result in an out of bounds error:

13

list_lookup : Nat -> List a -> Maybe a
list_lookup _ Nil = Nothing
list_lookup Z (x :: xs) = Just x
list_lookup (S k) (x :: xs) = list_lookup k xs

The maybe function is used to process values of type Maybe, either by applying a function to the value, if
there is one, or by providing a default value:

maybe : Maybe a -> |(default:b) -> (a -> b) -> b

The vertical bar | before the default value is a laziness annotation. Normally expressions are evaluated before
being passed to a function. This is typically the most efficient behaviour. However, in this case, the default
value might not be used and if it is a large expression, evaluating it will be wasteful. The | annotation tells
the compiler not to evaluate the argument until it is needed.

3.7.3 Tuples and Dependent Pairs

Values can be paired with the following built-in data type:

data Pair a b = MkPair a b

As syntactic sugar, we can write (a, b) which, according to context, means either Pair a b or MkPair
a b. Tuples can contain an arbitrary number of values, represented as nested pairs:

fred : (String, Int)
fred = ("Fred", 42)

jim : (String, Int, String)
jim = ("Jim", 25, "Cambridge")

Dependent Pairs

Dependent pairs allow the type of the second element of a pair to depend on the value of the first element:

data Exists : (A : Type) -> (P : A -> Type) -> Type where
Ex_intro : {P : A -> Type} -> (a : A) -> P a -> Exists A P

Again, there is syntactic sugar for this. (a : A ** P) is the type of a pair of A and P, where the name a
can occur inside P. (a ** p) constructs a value of this type. For example, we can pair a number with a
Vect of a particular length.

vec : (n : Nat ** Vect n Int)
vec = (2 ** [3, 4])

The type checker could of course infer the value of the first element from the length of the vector. We can
write an underscore _ in place of values which we expect the type checker to fill in, so the above definition
could also be written as:

vec : (n : Nat ** Vect n Int)
vec = (_ ** [3, 4])

We might also prefer to omit the type of the first element of the pair, since, again, it can be inferred:

vec : (n ** Vect n Int)
vec = (_ ** [3, 4])

One use for dependent pairs is to return values of dependent types where the index is not necessarily known
in advance. For example, if we filter elements out of a Vect according to some predicate, we will not know
in advance what the length of the resulting vector will be:

14

filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)

If the Vect is empty, the result is easy:

filter p Nil = (_ ** [])

In the :: case, we need to inspect the result of a recursive call to filter to extract the length and the vector
from the result. To do this, we use with notation, which allows pattern matching on intermediate values:

filter p (x :: xs) with (filter p xs)
| (_ ** xs’) = if (p x) then (_ ** x :: xs’) else (_ ** xs’)

We will see more on with notation later.

3.8 so

The so data type is a predicate on Bool which guarantees that the value is true:

data so : Bool -> Type where
oh : so True

This is most useful for providing a static guarantee that a dynamic check has been made. For example, we
might provide a safe interface to a function which draws a pixel on a graphical display as follows, where so
(inBounds x y) guarantees that the point (x,y) is within the bounds of a 640× 480 window:

inBounds : Int -> Int -> Bool
inBounds x y = x >= 0 && x < 640 && y >= 0 && y < 480

drawPoint : (x : Int) -> (y : Int) -> so (inBounds x y) -> IO ()
drawPoint x y p = unsafeDrawPoint x y

3.9 More Expressions

let bindings

Intermediate values can be calculated using let bindings:

mirror : List a -> List a
mirror xs = let xs’ = rev xs in

xs ++ xs’

We can do simple pattern matching in let bindings too. For example, we can extract fields from a record as
follows, as well as by pattern matching at the top level:

data Person = MkPerson String Int

showPerson : Person -> String
showPerson p = let MkPerson name age = p in

name ++ " is " ++ show age ++ " years old"

List comprehensions

IDRIS provides comprehension notation as a convenient shorthand for building lists. The general form is:

[expression | qualifiers]

This generates the list of values produced by evaluating the expression, according to the conditions given
by the comma separated qualifiers. For example, we can build a list of Pythagorean triples as follows:

15

pythag : Int -> List (Int, Int, Int)
pythag n = [(x, y, z) | z <- [1..n], y <- [1..z], x <- [1..y],

x*x + y*y == z*z]

The [a..b] notation is another shorthand which builds a list of numbers between a and b. Alternatively
[a,b..c] builds a list of numbers between a and c with the increment specified by the difference between
a and b. This works for any numeric type, using the count function from the prelude.

case expressions

Another way of inspecting intermediate values of simple types is to use a case expression. The following
function, for example, splits a string into two at a given character:

splitAt : Char -> String -> (String, String)
splitAt c x = case break (== c) x of

(x, y) => (x, strTail y)

break is a library function which breaks a string into a pair of strings at the point where the given function
returns true. We then deconstruct the pair it returns, and remove the first character of the second string.

A case expression can match several cases, for example, to inspect an intermediate value of type Maybe
a. Recall list_lookup which looks up an index in a list, returning Nothing if the index is out of bounds.
We can use this to write lookup_default, which looks up an index and returns a default value if the index
is out of bounds:

lookup_default : Nat -> List a -> a -> a
lookup_default i xs def = case list_lookup i xs of

Nothing => def
Just x => x

If the index is in bounds, we get the value at that index, otherwise we get a default value:

*usefultypes> lookup_default 2 [3,4,5,6] (-1)
5 : Int

*usefultypes> lookup_default 4 [3,4,5,6] (-1)
-1 : Int

Restrictions: The case construct is intended for simple analysis of intermediate expressions to avoid the
need to write auxiliary functions, and is also used internally to implement pattern matching let and lambda
bindings. It will only work if:

• Each branch matches a value of the same type, and returns a value of the same type.

• The type of the result is “known”. i.e. the type of the expression can be determined without type
checking the case-expression itself.

3.10 Dependent Records

Records are data types which collect several values (the record’s fields) together. IDRIS provides syntax for
defining records and automatically generating field access and update functions. For example, we can
represent a person’s name and age in a record:

record Person : Type where
MkPerson : (name : String) ->

(age : Int) -> Person

fred : Person
fred = MkPerson "Fred" 30

16

Record declarations are like data declarations, except that they are introduced by the record keyword,
and can only have one constructor. The names of the binders in the constructor type (name and age) here
are the field names, which we can use to access the field values:

*record> name fred
"Fred" : String

*record> age fred
30 : Int

*record> :t name
name : Person -> String

We can also use the field names to update a record (or, more precisely, produce a new record with the given
fields updates).

*record> record { name = "Jim" } fred
MkPerson "Jim" 30 : Person

*record> record { name = "Jim", age = 20 } fred
MkPerson "Jim" 20 : Person

The syntax record { field = val, ... } generates a function which updates the given fields in a
record.

Records, and fields within records, can have dependent types. Updates are allowed to change the type of
a field, provided that the result is well-typed, and the result does not affect the type of the record as a whole.
For example:

record Class : Type where
ClassInfo : (students : Vect n Person) ->

(className : String) ->
Class

It is safe to update the students field to a vector of a different length because it will not affect the type of
the record:

addStudent : Person -> Class -> Class
addStudent p c = record { students = p :: students c } c

*record> addStudent fred (ClassInfo [] "CS")
ClassInfo (prelude.vect.:: (MkPerson "Fred" 30) (prelude.vect.Nil)) "CS"

: Class

4 Type Classes

We often want to define functions which work across several different data types. For example, we would
like arithmetic operators to work on Int, Integer and Float at the very least. We would like == to work
on the majority of data types. We would like to be able to display different types in a uniform way.

To achieve this, we use a feature which has proved to be effective in Haskell, namely type classes. To define
a type class, we provide a collection of overloaded operations which describe the interface for instances of
that class. A simple example is the Show type class, which is defined in the prelude and provides an interface
for converting values to String:

class Show a where
show : a -> String

This generates a function of the following type (which we call a method of the Show class):

show : Show a => a -> String

17

We can read this as: “under the constraint that a is an instance of Show, take an input a and return a String.”
An instance of a class is defined with an instance declaration, which provides implementations of the
function for a specific type. For example, the Show instance for Nat could be defined as:

instance Show Nat where
show Z = "Z"
show (S k) = "s" ++ show k

Idris> show (S (S (S Z)))
"sssO" : String

Only one instance of a class can be given for a type — instances may not overlap. Instance declarations can
themselves have constraints. For example, to define a Show instance for vectors, we need to know that there
is a Show instance for the element type, because we are going to use it to convert each element to a String:

instance Show a => Show (Vect n a) where
show xs = "[" ++ show’ xs ++ "]" where

show’ : Vect n a -> String
show’ Nil = ""
show’ (x :: Nil) = show x
show’ (x :: xs) = show x ++ ", " ++ show’ xs

4.1 Default Definitions

The library defines an Eq class which provides an interface for comparing values for equality or inequality,
with instances for all of the built-in types:

class Eq a where
(==) : a -> a -> Bool
(/=) : a -> a -> Bool

To declare an instance of a type, we have to give definitions of all of the methods. For example, for an
instance of Eq for Nat:

instance Eq Nat where
Z == Z = True
(S x) == (S y) = x == y
Z == (S y) = False
(S x) == Z = False

x /= y = not (x == y)

It is hard to imagine many cases where the /= method will be anything other than the negation of the result
of applying the == method. It is therefore convenient to give a default definition for each method in the class
declaration, in terms of the other method:

class Eq a where
(==) : a -> a -> Bool
(/=) : a -> a -> Bool

x /= y = not (x == y)
y == y = not (x /= y)

A minimal complete definition of an Eq instance requires either == or /= to be defined, but does not require
both. If a method definition is missing, and there is a default definition for it, then the default is used instead.

18

4.2 Extending Classes

Classes can also be extended. A logical next step from an equality relation Eq is to define an ordering relation
Ord. We can define an Ord class which inherits methods from Eq as well as defining some of its own:

data Ordering = LT | EQ | GT

class Eq a => Ord a where
compare : a -> a -> Ordering

(<) : a -> a -> Bool
(>) : a -> a -> Bool
(<=) : a -> a -> Bool
(>=) : a -> a -> Bool
max : a -> a -> a
min : a -> a -> a

The Ord class allows us to compare two values and determine their ordering. Only the compare method is
required; every other method has a default definition. Using this we can write functions such as sort, a
function which sorts a list into increasing order, provided that the element type of the list is in the Ord class.
We give the constraints on the type variables left of the fat arrow =>, and the function type to the right of the
fat arrow:

sort : Ord a => List a -> List a

Functions, classes and instances can have multiple constraints. Multiple constaints are written in brackets in
a comma separated list, for example:

sortAndShow : (Ord a, Show a) => List a -> String
sortAndShow xs = show (sort xs)

4.3 Monads and do-notation

So far, we have seen single parameter type classes, where the parameter is of type Type. In general, there
can be any number (greater than 0) of parameters, and the parameters can have any type. If the type of the
parameter is not Type, we need to give an explicit type declaration. For example:

class Monad (m : Type -> Type) where
return : a -> m a
(>>=) : m a -> (a -> m b) -> m b

The Monad class allows us to encapsulate binding and computation, and is the basis of do-notation intro-
duced in Section 3.6. Inside a do block, the following syntactic transformations are applied:

• x <- v; e becomes v »= (\x => e)

• v; e becomes v »= (_ => e)

• let x = v; e becomes let x = v in e

IO is an instance of Monad, defined using primitive functions. We can also define an instance for Maybe, as
follows:

instance Monad Maybe where
return = Just

Nothing >>= k = Nothing
(Just x) >>= k = k x

19

Using this we can, for example, define a function which adds two Maybe Ints, using the monad to
encapsulate the error handling:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = do x’ <- x −− E x t r a c t v a l u e f r o m x

y’ <- y −− E x t r a c t v a l u e f r o m y

return (x’ + y’) −− A d d t h e m

This function will extract the values from x and y, if they are available, or return Nothing if they are not.
Managing the Nothing cases is achieved by the »= operator, hidden by the do notation.

*classes> m_add (Just 20) (Just 22)
Just 42 : Maybe Int

*classes> m_add (Just 20) Nothing
Nothing : Maybe Int

Monad comprehensions

The list comprehension notation we saw in Section 3.9 is more general, and applies to anything which is an
instance of MonadPlus:

class Monad m => MonadPlus (m : Type -> Type) where
mplus : m a -> m a -> m a
mzero : m a

In general, a comprehension takes the form [exp | qual1, qual2, ..., qualn] where quali
can be one of:

• A generator x <- e

• A guard, which is an expression of type Bool

• A let binding let x = e

To translate a comprehension [exp | qual1, qual2, ..., qualn], first any qualifier qual which is
a guard is translated to guard qual, using the following function:

guard : MonadPlus m => Bool -> m ()

Then the comprehension is converted to do notation:

do { qual1; qual2; ...; qualn; return exp; }

Using monad comprehensions, an alternative definition for m_add would be:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = [x’ + y’ | x’ <- x, y’ <- y]

4.4 Idiom brackets

While do notation gives an alternative meaning to sequencing, idioms give an alternative meaning to
application. The notation and larger example in this section is inspired by Conor McBride and Ross Paterson’s
paper “Applicative Programming with Effects” [8].

First, let us revisit m_add above. All it is really doing is applying an operator to two values extracted
from Maybe Int’s. We could abstract out the application:

20

m_app : Maybe (a -> b) -> Maybe a -> Maybe b
m_app (Just f) (Just a) = Just (f a)
m_app _ _ = Nothing

Using this, we can write an alternative m_add which uses this alternative notion of function application,
with explicit calls to m_app:

m_add’ : Maybe Int -> Maybe Int -> Maybe Int
m_add’ x y = m_app (m_app (Just (+)) x) y

Rather than having to insert m_app everywhere there is an application, we can use idiom brackets to do the
job for us. To do this, we use the Applicative class, which captures the notion of application for a data
type:

infixl 2 <$>

class Applicative (f : Type -> Type) where
pure : a -> f a
(<$>) : f (a -> b) -> f a -> f b

Maybe is made an instance of Applicative as follows, where <$> is defined in the same way as m_app
above:

instance Applicative Maybe where
pure = Just

(Just f) <$> (Just a) = Just (f a)
_ <$> _ = Nothing

Using idiom brackets we can use this instance as follows, where a function application [| f a1 ...an |]
is translated into pure f <$> a1 <$> ...<$> an:

m_add’ : Maybe Int -> Maybe Int -> Maybe Int
m_add’ x y = [| x + y |]

4.4.1 An error-handling interpreter

Idiom notation is commonly useful when defining evaluators. McBride and Paterson describe such an
evaluator [8], for a language similar to the following:

data Expr = Var String −− v a r i a b l e s

| Val Int −− v a l u e s

| Add Expr Expr −− a d d i t i o n

Evaluation will take place relative to a context mapping variables (represented as Strings) to integer values,
and can possibly fail. We define a data type Eval to wrap an evaluator:

data Eval : Type -> Type where
MkEval : (List (String, Int) -> Maybe a) -> Eval a

Wrapping the evaluator in a data type means we will be able to make it an instance of a type class later. We
begin by defining a function to retrieve values from the context during evaluation:

fetch : String -> Eval Int
fetch x = MkEval (\e => fetchVal e) where

fetchVal : List (String, Int) -> Maybe Int
fetchVal [] = Nothing
fetchVal ((v, val) :: xs) = if (x == v) then (Just val) else (fetchVal xs)

21

When defining an evaluator for the language, we will be applying functions in the context of an Eval, so it
is natural to make Eval an instance of Applicative. Before Eval can be an instance of Applicative it
is necessary to make Eval an instance of Functor:

instance Functor Eval where
fmap f (MkEval g) = MkEval (\e => fmap f (g e))

instance Applicative Eval where
pure x = MkEval (\e => Just x)

(<$>) (MkEval f) (MkEval g) = MkEval (\x => app (f x) (g x)) where
app : Maybe (a -> b) -> Maybe a -> Maybe b
app (Just fx) (Just gx) = Just (fx gx)
app _ _ = Nothing

Evaluating an expression can now make use of the idiomatic application to handle errors:

eval : Expr -> Eval Int
eval (Var x) = fetch x
eval (Val x) = [| x |]
eval (Add x y) = [| eval x + eval y |]

runEval : List (String, Int) -> Expr -> Maybe Int
runEval env e = case eval e of

MkEval envFn => envFn env

4.5 Named Instances

It can be desirable to have multiple instances of a type class, for example to provide alternative methods for
sorting or printing values. To achieve this, instances can be named as follows:

instance [myord] Ord Nat where
compare Z (S n) = GT
compare (S n) Z = LT
compare Z Z = EQ
compare (S x) (S y) = compare @{myord} x y

This declares an instance as normal, but with an explicit name, myord. The syntax compare @{myord}
gives an explicit instance to compare, otherwise it would use the default instance for Nat. We can use this,
for example, to sort a list of Nats in reverse. Given the following list:

testList : List Nat
testList = [3,4,1]

. . . we can sort it using the default Ord instance, then the named instance myord as follows, at the IDRIS
prompt:

*named_instance> show (sort testList)
"[sO, sssO, ssssO]" : String

*named_instance> show (sort @{myord} testList)
"[ssssO, sssO, sO]" : String

22

5 Modules and Namespaces

An IDRIS program consists of a collection of modules. Each module includes an optional module declaration
giving the name of the module, a list of import statements giving the other modules which are to be
imported, and a collection of declarations and definitions of types, classes and functions. For example,
Listing 3 gives a module which defines a binary tree type BTree (in a file btree.idr) and Listing 4 gives a
main program (in a file bmain.idr which uses the bst module to sort a list.

Listing 3: Binary Tree module
module btree

data BTree a = Leaf
| Node (BTree a) a (BTree a)

insert : Ord a => a -> BTree a -> BTree a
insert x Leaf = Node Leaf x Leaf
insert x (Node l v r) = if (x < v) then (Node (insert x l) v r)

else (Node l v (insert x r))

toList : BTree a -> List a
toList Leaf = []
toList (Node l v r) = toList l ++ (v :: toList r)

toTree : Ord a => List a -> BTree a
toTree [] = Leaf
toTree (x :: xs) = insert x (toTree xs)

Listing 4: Binary Tree main program
module Main

import btree

main : IO ()
main = do let t = toTree [1,8,2,7,9,3]

print (toList t)

The same names can be defined in multiple modules. This is possible because in practice names are qualified
with the name of the module. The names defined in the btree module are, in full:

• btree.BTree,
• btree.Leaf,
• btree.Node,

• btree.insert,
• btree.toList,
• btree.toTree.

If names are otherwise unambiguous, there is no need to give the fully qualified name. Names can be
disambiguated either by giving an explicit qualification, or according to their type.

There is no formal link between the module name and its filename, although it is generally advisable to
use the same name for each. An import statement refers to a filename, using dots to separate directories. For
example, import foo.bar would import the file foo/bar.idr, which would conventionally have the
module declaration module foo.bar. The only requirement for module names is that the main module,
with the main function, must be called Main—although its filename need not be Main.idr.

23

5.1 Export Modifiers

By default, all names defined in a module are exported for use by other modules. However, it is good
practice only to export a minimal interface and keep internal details abstract. IDRIS allows functions, types
and classes to be marked as: public, abstract or private:

• public means that both the name and definition are exported. For functions, this means that the
implementation is exported (which means, for example, it can be used in a dependent type). For data
types, this means that the type name and the constructors are exported. For classes, this means that the
class name and method names are exported.

• abstract means that only the name is exported. For functions, this means that the implementation is
not exported. For data types, this means that the type name is exported but not the constructors. For
classes, this means that the class name is exported but not the method names.

• private means that neither the name nor the definition is exported.

If any definition is given an export modifier, then all names with no modifier are assumed to be private.
For our btree module, it makes sense for the tree data type and the functions to be exported as abstract,
as we see in Listing 5.

Listing 5: Binary Tree module, with export modifiers
module btree

abstract data BTree a = Leaf
| Node (BTree a) a (BTree a)

abstract
insert : Ord a => a -> BTree a -> BTree a
insert x Leaf = Node Leaf x Leaf
insert x (Node l v r) = if (x < v) then (Node (insert x l) v r)

else (Node l v (insert x r))

abstract
toList : BTree a -> List a
toList Leaf = []
toList (Node l v r) = app (toList l) (v :: toList r)

abstract
toTree : Ord a => List a -> BTree a
toTree [] = Leaf
toTree (x :: xs) = insert x (toTree xs)

Finally, the default export mode can be changed with the %access directive, for example:

%access abstract

In this case, any function with no access modifier will be exported as abstract, rather than left private.

5.2 Explicit Namespaces

Defining a module also defines a namespace implicitly. However, namespaces can also be given explicitly.
This is most useful if you wish to overload names within the same module:

24

module foo

namespace x
test : Int -> Int
test x = x * 2

namespace y
test : String -> String
test x = x ++ x

This (admittedly contrived) module defines two functions with fully qualified names foo.x.test and
foo.y.test, which can be disambiguated by their types:

*foo> test 3
6 : Int

*foo> test "foo"
"foofoo" : String

5.3 Parameterised blocks

Groups of functions can be parameterised over a number of arguments using a parameters declaration,
for example:

parameters (x : Nat, y : Nat)
addAll : Nat -> Nat
addAll z = x + y + z

The effect of a parameters block is to add the declared parameters to every function, type and data
constructor within the block. Outside the block, the parameters must be given explicitly:

*params> :t addAll
addAll : Nat -> Nat -> Nat -> Nat

Parameters blocks can be nested, and can also include data declarations, in which case the parameters
are added explicitly to all type and data constructors. They may also be dependent types with implicit
arguments:

parameters (xs : Vect x a, y : Nat)
data Vects : Type -> Type where

MkVects : Vect a y -> Vects a

append : Vects a -> Vect (x + y) a
append (MkVects ys) = xs ++ ys

To use Vects or append outside the block, we must also give the xs and y arguments. Here, we can use
placeholders for the values which can be inferred by the type checker:

*params> show (append _ _ (MkVects [1,2,3] _ [4,5,6]))
"[1, 2, 3, 4, 5, 6]" : String

6 Example: The Well-Typed Interpreter

In this section, we’ll use the features we’ve seen so far to write a larger example, an interpreter for a
simple functional programming language, with variables, function application, binary operators and an

25

if...then...else construct. We will use the dependent type system to ensure that any programs which
can be represented are well-typed. First, let us define the types in the language. We have integers, booleans,
and functions, represented by Ty:

data Ty = TyInt | TyBool | TyFun Ty Ty

We can write a function to translate these representations to a concrete IDRIS type — remember that types
are first class, so can be calculated just like any other value:

interpTy : Ty -> Type
interpTy TyInt = Int
interpTy TyBool = Bool
interpTy (TyFun A T) = interpTy A -> interpTy T

We’re going to define a representation of our language in such a way that only well-typed programs can be
represented. We’ll index the representations of expressions by their type and the types of local variables (the
context), which we’ll be using regularly as an implicit argument, so we define everything in a using block:

using (G:Vect n Ty)

The full representation of expressions is given in Listing 6. They are indexed by the types of the local
variables, and the type of the expression itself:

data Expr : Vect n Ty -> Ty -> Type

Since expressions are indexed by their type, we can read the typing rules of the language from the definitions
of the constructors. Let us look at each constructor in turn.

Listing 6: Expression representation
data HasType : (i : Fin n) -> Vect n Ty -> Ty -> Type where

stop : HasType fZ (t :: G) t
pop : HasType k G t -> HasType (fS k) (u :: G) t

data Expr : Vect n Ty -> Ty -> Type where
Var : HasType i G t -> Expr G t
Val : (x : Int) -> Expr G TyInt
Lam : Expr (a :: G) t -> Expr G (TyFun a t)
App : Expr G (TyFun a t) -> Expr G a -> Expr G t
Op : (interpTy a -> interpTy b -> interpTy c) -> Expr G a -> Expr G b ->

Expr G c
If : Expr G TyBool -> Expr G a -> Expr G a -> Expr G a

We use a nameless representation for variables — they are de Bruijn indexed. Variables are represented by a
proof of their membership in the context, HasType i G T, which is a proof that variable i in context G has
type T. This is defined as follows:

data HasType : (i : Fin n) -> Vect n Ty -> Ty -> Type where
stop : HasType fZ (t :: G) t
pop : HasType k G t -> HasType (fS k) (u :: G) t

We can treat stop as a proof that the most recently defined variable is well-typed, and pop n as a proof that, if
the nth most recently defined variable is well-typed, so is the n+1th. In practice, this means we use stop to
refer to the most recently defined variable, pop stop to refer to the next, and so on, via the Var constructor:

Var : HasType i G t -> Expr G t

So, in an expression \x. \y. x y, the variable x would have a de Bruijn index of 1, represented as
pop stop, and y 0, represented as stop. We find these by counting the number of lambdas between the
definition and the use.
A value carries a concrete representation of an integer:

26

Val : (x : Int) -> Expr G TyInt

A lambda creates a function. In the scope of a function of type a -> t, there is a new local variable of type
a, which is expressed by the context index:

Lam : Expr (a :: G) t -> Expr G (TyFun a t)

Function application produces a value of type t given a function from a to t and a value of type a:

App : Expr G (TyFun a t) -> Expr G a -> Expr G t

We allow arbitrary binary operators, where the type of the operator informs what the types of the arguments
must be:

Op : (interpTy a -> interpTy b -> interpTy c) -> Expr G a -> Expr G b ->
Expr G c

Finally, if expressions make a choice given a boolean. Each branch must have the same type:

If : Expr G TyBool -> Expr G a -> Expr G a -> Expr G a

When we evaluate an Expr, we’ll need to know the values in scope, as well as their types. Env is an
environment, indexed over the types in scope. Since an environment is just another form of list, albeit with a
strongly specified connection to the vector of local variable types, we use the usual :: and Nil constructors
so that we can use the usual list syntax. Given a proof that a variable is defined in the context, we can then
produce a value from the environment:

data Env : Vect n Ty -> Type where
Nil : Env Nil
(::) : interpTy a -> Env G -> Env (a :: G)

lookup : HasType i G t -> Env G -> interpTy t
lookup stop (x :: xs) = x
lookup (pop k) (x :: xs) = lookup k xs

Listing 7: Intepreter definition
interp : Env G -> Expr G t -> interpTy t
interp env (Var i) = lookup i env
interp env (Val x) = x
interp env (Lam sc) = \x => interp (x :: env) sc
interp env (App f s) = interp env f (interp env s)
interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x then interp env t

else interp env e

Given this, an interpreter (Listing 7) is a function which translates an Expr into a concrete IDRIS value with
respect to a specific environment:

interp : Env G -> Expr G t -> interpTy t

To translate a variable, we simply look it up in the environment:

interp env (Var i) = lookup i env

To translate a value, we just return the concrete representation of the value:

interp env (Val x) = x

Lambdas are more interesting. In this case, we construct a function which interprets the scope of the lambda
with a new value in the environment. So, a function in the object language is translated to an IDRIS function:

27

interp env (Lam sc) = \x => interp (x :: env) sc

For an application, we interpret the function and its argument and apply it directly. We know that interpreting
f must produce a function, because of its type:

interp env (App f s) = interp env f (interp env s)

Operators and interpreters are, again, direct translations into the equivalent IDRIS constructs. For operators,
we apply the function to its operands directly, and for If, we apply the IDRIS if...then...else construct
directly.

interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x then interp env t

else interp env e

We can make some simple test functions. Firstly, adding two inputs \x. \y. y + x is written as follows:

add : Expr G (TyFun TyInt (TyFun TyInt TyInt))
add = Lam (Lam (Op (+) (Var stop) (Var (pop stop))))

More interestingly, we can write a factorial function. First, we write a lazy version of the App constructor, so
that the recursive branch will only be evaluated if necessary:

app : |(f : Expr G (TyFun a t)) -> Expr G a -> Expr G t
app = \f, a => App f a

The vertical bar annotation before the f argument indicates that this argument should be evaluated lazily
when app is applied — that is, the argument will be evaluated only when needed. Then fact (i.e. \x. if
(x == 0) then 1 else (fact (x-1) * x)) is written as follows:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var stop) (Val 0))

(Val 1) (Op (*) (app fact (Op (-) (Var stop) (Val 1)))
(Var stop)))

To finish, we write a main program which interprets the factorial function on user input:

main : IO ()
main = do putStr "Enter a number: "

x <- getLine
print (interp [] fact (cast x))

Here, cast is an overloaded function which converts a value from one type to another if possible. Here, it
converts a string to an integer, giving 0 if the input is invalid. An example run of this program at the IDRIS
interactive environment is shown in Listing 8.

Listing 8: Running the well-typed interpreter
$ idris interp.idr

____ __ _
/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.10

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Type checking ./interp.idr

*interp> :exec
Enter a number: 6
720

*interp>

28

Aside: cast

The prelude defines a type class Cast which allows conversion between types:

class Cast from to where
cast : from -> to

It is a multi-parameter type class, defining the source type and object type of the cast. It must be possible
for the type checker to infer both parameters at the point where the cast is applied. There are casts defined
between all of the primitive types, as far as they make sense.

6.1 Unit testing

Recall the so data type:

data so : Bool -> Type where
oh : so True

This requires its parameter to be a True value. One simple application of this is to perform unit testing of
functions at compile time. For example, we know that 4! = 24 so we can set up a test case as follows:

unitTestFac : so (interp [] fact 4 == 24)
unitTestFac = oh

For the program to compile, the test case must pass. If we change 24 to 25, say, we will get an error message
like the following:

Type checking ./interp.idr
interp.idr:64:Can’t unify so True with so False

Specifically:
Can’t unify True with False

7 Views and the “with” rule

7.1 Dependent pattern matching

Since types can depend on values, the form of some arguments can be determined by the value of others.
For example, if we were to write down the implicit length arguments to (++), we’d see that the form of the
length argument was determined by whether the vector was empty or not:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) {n=Z} [] ys = ys
(++) {n=S k} (x :: xs) ys = x :: xs ++ ys

If n was a successor in the [] case, or zero in the :: case, the definition would not be well typed.

7.2 The with rule — matching intermediate values

Very often, we need to match on the result of an intermediate computation. IDRIS provides a construct for
this, the with rule, inspired by views in EPIGRAM [7], which takes account of the fact that matching on a
value in a dependently typed language can affect what we know about the forms of other values. In its
simplest form, the with rule adds another argument to the function being defined, e.g. we have already
seen a vector filter function, defined as follows:

29

filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)
filter p [] = (_ ** [])
filter p (x :: xs) with (filter p xs)
| (_ ** xs’) = if (p x) then (_ ** x :: xs’) else (_ ** xs’)

Here, the with clause allows us to deconstruct the result of filter p xs. Effectively, it adds this value as
an extra argument, which we place after the vertical bar.

If the intermediate computation itself has a dependent type, then the result can affect the forms of other
arguments — we can learn the form of one value by testing another. For example, a Nat is either even or
odd. If it’s even it will be the sum of two equal Nats. Otherwise, it is the sum of two equal Nats plus one:

data Parity : Nat -> Type where
even : Parity (n + n)
odd : Parity (S (n + n))

We say Parity is a view of Nat. It has a covering function which tests whether it is even or odd and constructs
the predicate accordingly.

parity : (n:Nat) -> Parity n

We’ll come back to the definition of parity shortly. We can use it to write a function which converts a
natural number to a list of binary digits (least significant first) as follows, using the with rule:

natToBin : Nat -> List Bool
natToBin Z = Nil
natToBin k with (parity k)

natToBin (j + j) | even = False :: natToBin j
natToBin (S (j + j)) | odd = True :: natToBin j

The value of the result of parity k affects the form of k, because the result of parity k depends on k. So,
as well as the patterns for the result of the intermediate computation (even and odd) right of the |, we also
write how the results affect the other patterns left of the |. Note that there is a function in the patterns (+)
and repeated occurrences of j—this is allowed because another argument has determined the form of these
patterns.

We will return to this function in Section 9 to complete the definition of parity.

8 Theorem Proving

8.1 Equality

IDRIS allows propositional equalities to be declared, allowing theorems about programs to be stated and
proved. Equality is built in, but conceptually has the following definition:

data (=) : a -> b -> Type where
refl : x = x

Equalities can be proposed between any values of any types, but the only way to construct a proof of equality
is if values actually are equal. For example:

fiveIsFive : 5 = 5
fiveIsFive = refl

twoPlusTwo : 2 + 2 = 4
twoPlusTwo = refl

30

8.2 The Empty Type

There is an empty type, ⊥, which has no constructors. It is therefore impossible to construct an element of
the empty type, at least without using a partially defined or general recursive function (see Section 8.5 for
more details). We can therefore use the empty type to prove that something is impossible, for example zero
is never equal to a successor:

disjoint : (n : Nat) -> Z = S n -> _|_
disjoint n p = replace {P = disjointTy} p ()

where
disjointTy : Nat -> Type
disjointTy Z = ()
disjointTy (S k) = _|_

There is no need to worry too much about how this function works — essentially, it applies the library
function replace, which uses an equality proof to transform a predicate. Here we use it to transform
a value of a type which can exist, the empty tuple, to a value of a type which can’t, by using a proof of
something which can’t exist.

Once we have an element of the empty type, we can prove anything. FalseElim is defined in the library,
to assist with proofs by contradiction.

FalseElim : _|_ -> a

8.3 Simple Theorems

When type checking dependent types, the type itself gets normalised. So imagine we want to prove the
following theorem about the reduction behaviour of plus:

plusReduces : (n:Nat) -> plus Z n = n

We’ve written down the statement of the theorem as a type, in just the same way as we would write the
type of a program. In fact there is no real distinction between proofs and programs. A proof, as far as we
are concerned here, is merely a program with a precise enough type to guarantee a particular property of
interest.

We won’t go into details here, but the Curry-Howard correspondence [6] explains this relationship. The
proof itself is trivial, because plus Z n normalises to n by the definition of plus:

plusReduces n = refl

It is slightly harder if we try the arguments the other way, because plus is defined by recursion on its first
argument. The proof also works by recursion on the first argument to plus, namely n.

plusReducesZ : (n:Nat) -> n = plus n Z
plusReducesZ Z = refl
plusReducesZ (S k) = cong (plusReducesZ k)

cong is a function defined in the library which states that equality respects function application:

cong : {f : t -> u} -> a = b -> f a = f b

We can do the same for the reduction behaviour of plus on successors:

plusReducesS : (n:Nat) -> (m:Nat) -> S (plus n m) = plus n (S m)
plusReducesS Z m = refl
plusReducesS (S k) m = cong (plusReducesS k m)

Even for trival theorems like these, the proofs are a little tricky to construct in one go. When things get even
slightly more complicated, it becomes too much to think about to construct proofs in this ‘batch mode’. IDRIS
therefore provides an interactive proof mode.

31

8.4 Interactive theorem proving

Instead of writing the proof in one go, we can use IDRIS’s interactive proof mode. To do this, we write the
general structure of the proof, and use the interactive mode to complete the details. We’ll be constructing the
proof by induction, so we write the cases for Z and S, with a recursive call in the S case giving the inductive
hypothesis, and insert metavariables for the rest of the definition:

plusReducesZ’ : (n:Nat) -> n = plus n Z
plusReducesZ’ Z = ?plusredZ_Z
plusReducesZ’ (S k) = let ih = plusReducesZ’ k in

?plusredZ_S

On running IDRIS, two global names are created, plusredZ_O and plusredZ_S, with no definition. We
can use the :m command at the prompt to find out which metavariables are still to be solved (or, more
precisely, which functions exist but have no definitions), then the :t command to see their types:

*theorems> :m
Global metavariables:

[plusredZ_S,plusredZ_Z]

*theorems> :t plusredZ_Z
plusredZ_Z : Z = plus Z Z

*theorems> :t plusredZ_S
plusredZ_S : (k : Nat) -> (k = plus k Z) -> S k = plus (S k) Z

The :p command enters interactive proof mode, which can be used to complete the missing definitions.

*theorems> :p plusredZ_Z

---------------------------------- (plusredZ_Z) --------
{hole0} : Z = plus Z Z

This gives us a list of premises (above the line; there are none here) and the current goal (below the line;
named {hole0} here). At the prompt we can enter tactics to direct the construction of the proof. In this
case, we can normalise the goal with the compute tactic:

-plusredZ_Z> compute

---------------------------------- (plusredZ_Z) --------
{hole0} : Z = Z

Now we have to prove that Z equals Z, which is easy to prove by refl. To apply a function, such as refl,
we use refine which introduces subgoals for each of the function’s explicit arguments (refl has none):

-plusredZ_Z> refine refl
plusredZ_Z: no more goals

Here, we could also have used the trivial tactic, which tries to refine by refl, and if that fails, tries to
refine by each name in the local context. When a proof is complete, we use the qed tactic to add the proof to
the global context, and remove the metavariable from the unsolved metavariables list. This also outputs a
trace of the proof:

-plusredZ_Z> qed
plusredZ_Z = proof {

compute;
refine refl;

}

32

*theorems> :m
Global metavariables:

[plusredZ_S]

The :addproof command, at the interactive prompt, will add the proof to the source file (effectively in an
appendix). Let us now prove the other required lemma, plusredZ_S:

*theorems> :p plusredZ_S

---------------------------------- (plusredZ_S) --------
{hole0} : (k : Nat) -> (k = plus k Z) -> S k = plus (S k) Z

In this case, the goal is a function type, using k (the argument accessible by pattern matching) and ih —
the local variable containing the result of the recursive call. We can introduce these as premisses using the
intro tactic twice (or intros, which introduces all arguments as premisses). This gives:

k : Nat
ih : k = plus k Z

---------------------------------- (plusredZ_S) --------
{hole2} : S k = plus (S k) Z

Since plus is defined is defined by recursion on its first argument, the term plus (S k) Z in the goal can
be simplified, so we use compute.

k : Nat
ih : k = plus k Z

---------------------------------- (plusredZ_S) --------
{hole2} : S k = S (plus k Z)

We know, from the type of ih, that k = plus k Z, so we would like to use this knowledge to replace plus
k Z in the goal with k. We can achieve this with the rewrite tactic:

-plusredZ_S> rewrite ih

k : Nat
ih : k = plus k Z

---------------------------------- (plusredZ_S) --------
{hole3} : S k = S k

-plusredZ_S>

The rewrite tactic takes an equality proof as an argument, and tries to rewrite the goal using that proof.
Here, it results in an equality which is trivially provable:

-plusredZ_S> trivial
plusredZ_S: no more goals
-plusredZ_S> qed
plusredZ_S = proof {

intros;
rewrite ih;
trivial;

}

Again, we can add this proof to the end of our source file using the :addproof command at the interactive
prompt.

33

8.5 Totality Checking

If we really want to trust our proofs, it is important that they are defined by total functions — that is,
a function which is defined for all possible inputs and is guaranteed to terminate. Otherwise we could
construct an element of the empty type, from which we could prove anything:

−− m a k i n g u s e o f ’ hd ’ b e i n g p a r t i a l l y d e f i n e d

empty1 : _|_
empty1 = hd [] where

hd : List a -> a
hd (x :: xs) = x

−− n o t t e r m i n a t i n g

empty2 : _|_
empty2 = empty2

Internally, IDRIS checks every definition for totality, and we can check at the prompt with the :total
command. We see that neither of the above definitions is total:

*theorems> :total empty1
possibly not total due to: empty1#hd

not total as there are missing cases

*theorems> :total empty2
possibly not total due to recursive path empty2

Note the use of the word “possibly” — a totality check can, of course, never be certain due to the undecidab-
ility of the halting problem. The check is, therefore, conservative. It is also possible (and indeed advisable, in
the case of proofs) to mark functions as total so that it will be a compile time error for the totality check to
fail:

total empty2 : _|_
empty2 = empty2

Type checking ./theorems.idr
theorems.idr:25:empty2 is possibly not total due to recursive path empty2

Reassuringly, our proof in Section 8.2 that the zero and successor constructors are disjoint is total:

*theorems> :total disjoint
Total

The totality check is, necessarily, conservative. To be recorded as total, a function f must:

• Cover all possible inputs

• Be well-founded — i.e. by the time a sequence of (possibly mutually) recursive calls reaches f again, it
must be possible to show that one of its arguments has decreased.

• Not use any data types which are not strictly positive

• Not call any non-total functions

8.5.1 Directives and Compiler Flags for Totality

By default, IDRIS allows all definitions, whether total or not. However, it is desirable for functions to be total
as far as possible, as this provides a guarantee that they provide a result for all possible inputs, in finite time.
It is possible to make total functions a requirement, either:

34

• By using the -total compiler flag.

• By adding a %default total directive to a source file. All definitions after this will be required to
be total, unless explicitly flagged as partial.

All functions after a %default total declaration are required to be total. Correspondingly, after a
%default partial declaration, the requirement is relaxed.

Finally, the compiler flag -warnpartial causes IDRIS to print a warning for any undeclared partial
function.

9 Provisional Definitions

Sometimes when programming with dependent types, the type required by the type checker and the type
of the program we have written will be different (in that they do not have the same normal form), but
nevertheless provably equal. For example, recall the parity function:

data Parity : Nat -> Type where
even : Parity (n + n)
odd : Parity (S (n + n))

parity : (n:Nat) -> Parity n

We’d like to implement this as follows:

parity : (n:Nat) -> Parity n
parity Z = even {n=Z}
parity (S Z) = odd {n=Z}
parity (S (S k)) with (parity k)

parity (S (S (j + j))) | even = even {n=S j}
parity (S (S (S (j + j)))) | odd = odd {n=S j}

This simply states that zero is even, one is odd, and recursively, the parity of k+2 is the same as the parity of
k. Explicitly marking the value of n is even and odd is necessary to help type inference. Unfortunately, the
type checker rejects this:

views.idr:12:Can’t unify Parity (plus (S j) (S j)) with
Parity (S (S (plus j j)))

The type checker is telling us that (j+1)+(j+1) and 2+j+j do not normalise to the same value. This is
because plus is defined by recursion on its first argument, and in the second value, there is a successor
symbol on the second argument, so this will not help with reduction. These values are obviously equal —
how can we rewrite the program to fix this problem?

9.1 Provisional definitions

Provisional definitions help with this problem by allowing us to defer the proof details until a later point.
There are two main reasons why they are useful.

• When prototyping, it is useful to be able to test programs before finishing all the details of proofs.

• When reading a program, it is often much clearer to defer the proof details so that they do not distract
the reader from the underlying algorithm.

Provisional definitions are written in the same way as ordinary definitions, except that they introduce the
right hand side with a ?= rather than =. We define parity as follows:

35

parity : (n:Nat) -> Parity n
parity Z = even {n=Z}
parity (S Z) = odd {n=Z}
parity (S (S k)) with (parity k)
parity (S (S (j + j))) | even ?= even {n=S j}
parity (S (S (S (j + j)))) | odd ?= odd {n=S j}

When written in this form, instead of reporting a type error, IDRIS will insert a metavariable standing for
a theorem which will correct the type error. IDRIS tells us we have two proof obligations, with names
generated from the module and function names:

*views> :m
Global metavariables:

[views.parity_lemma_2,views.parity_lemma_1]

The first of these has the following type:

*views> :p views.parity_lemma_1

---------------------------------- (views.parity_lemma_1) --------
{hole0} : (j : Nat) -> (Parity (plus (S j) (S j))) -> Parity (S (S (j + j)))

-views.parity_lemma_1>

The two arguments are j, the variable in scope from the pattern match, and value, which is the value we
gave in the right hand side of the provisional definition. Our goal is to rewrite the type so that we can use
this value. We can achieve this using the following theorem from the prelude:

plusSuccRightSucc : (left : Nat) -> (right : Nat) ->
S (left + right) = left + (S right)

After applying intro twice, we have:

-views.parity_lemma_1> intro

j : Nat
value : Parity (S (plus j (S j)))

---------------------------------- (views.parity_lemma_1) --------
{hole2} : Parity (S (S (j + j)))

We need to use compute again to unfold the definition of (+).

-views.parity_lemma_1> intro

j : Nat
value : Parity (S (plus j (S j)))

---------------------------------- (views.parity_lemma_1) --------
{hole2} : Parity (S (S (plus j j)))

Then we apply the plusSuccRightSucc rewrite rule, symmetrically, to j and j, giving:

-views.parity_lemma_1> rewrite sym (plusSuccRightSucc j j)

j : Nat
value : Parity (S (plus j (S j)))

---------------------------------- (views.parity_lemma_1) --------
{hole3} : Parity (S (plus j (S j)))

sym is a function, defined in the library, which reverses the order of the rewrite:

36

sym : l = r -> r = l
sym refl = refl

We can complete this proof using the trivial tactic, which finds value in the premises. The proof of the
second lemma proceeds in exactly the same way.

We can now test the natToBin function from Section 7.2 at the prompt. The number 42 is 101010 in
binary. The binary digits are reversed:

*views> show (natToBin 42)
"[False, True, False, True, False, True]" : String

9.2 Suspension of Disbelief

IDRIS requires that proofs be complete before compiling programs (although evaluation at the prompt is
possible without proof details). Sometimes, especially when prototyping, it is easier not to have to do this. It
might even be beneficial to test programs before attempting to prove things about them — if testing finds an
error, you know you had better not waste your time proving something!

Therefore, IDRIS provides a built-in coercion function, which allows you to use a value of the incorrect
types:

believe_me : a -> b

Obviously, this should be used with extreme caution. It is useful when prototyping, and can also be
appropriate when asserting properties of external code (perhaps in an external C library). The “proof” of
views.parity_lemma_1 using this is:

views.parity_lemma_2 = proof {
intro;
intro;
exact believe_me value;

}

The exact tactic allows us to provide an exact value for the proof. In this case, we assert that the value we
gave was correct.

9.3 Example: Binary numbers

Previously, we implemented conversion to binary numbers using the Parity view. Here, we show how
to use the same view to implement a verified conversion to binary. We begin by indexing binary numbers
over their Nat equivalent. This is a common pattern, linking a representation (in this case Binary) with a
meaning (in this case Nat):

data Binary : Nat -> Type where
bEnd : Binary Z
bO : Binary n -> Binary (n + n)
bI : Binary n -> Binary (S (n + n))

bO and bI take a binary number as an argument and effectively shift it one bit left, adding either a zero or
one as the new least significant bit. The index, n + n or S (n + n) states the result that this left shift then
add will have to the meaning of the number. This will result in a representation with the least significant bit
at the front.

Now a function which converts a Nat to binary will state, in the type, that the resulting binary number is
a faithful representation of the original Nat:

natToBin : (n:Nat) -> Binary n

37

The Parity view makes the definition fairly simple — halving the number is effectively a right shift after
all — although we need to use a provisional definition in the odd case:

natToBin : (n:Nat) -> Binary n
natToBin Z = bEnd
natToBin (S k) with (parity k)

natToBin (S (j + j)) | even = bI (natToBin j)
natToBin (S (S (j + j))) | odd ?= bO (natToBin (S j))

The problem with the odd case is the same as in the definition of parity, and the proof proceeds in the
same way:

natToBin_lemma_1 = proof {
intro;
intro;
rewrite sym (plusSuccRightSucc j j);
trivial;

}

To finish, we’ll implement a main program which reads an integer from the user and outputs it in binary.

main : IO ()
main = do putStr "Enter a number: "

x <- getLine
print (natToBin (fromInteger (cast x)))

For this to work, of course, we need a Show instance for Binary n:

instance Show (Binary n) where
show (bO x) = show x ++ "0"
show (bI x) = show x ++ "1"
show bEnd = ""

10 Syntax Extensions

IDRIS supports the implementation of Embedded Domain Specific Languages (EDSLs) in several ways [4]. One
way, as we have already seen, is through extending do notation. Another important way is to allow extension
of the core syntax. In this section we describe two ways of extending the syntax: syntax rules and dsl
notation.

10.1 syntax rules

We have seen if...then...else expressions, but these are not built in. Instead, we can define a function
in the prelude as follows:

boolElim : (x:Bool) -> |(t : a) -> |(f : a) -> a;
boolElim True t e = t;
boolElim False t e = e;

and then extend the core syntax with a syntax declaration:

syntax if [test] then [t] else [e] = boolElim test t e;

The left hand side of a syntax declaration describes the syntax rule, and the right hand side describes its
expansion. The syntax rule itself consists of:

38

• Keywords — here, if, then and else, which must be valid identifiers

• Non-terminals — included in square brackets, [test], [t] and [e] here, which stand for arbitrary
expressions. To avoid parsing ambiguities, these expressions cannot use syntax extensions at the top
level (though they can be used in parentheses).

• Names — included in braces, which stand for names which may be bound on the right hand side.

• Symbols — included in quotations marks, e.g. ":=". This can also be used to include reserved words
in syntax rules, such as "let" or "in".

The limitations on the form of a syntax rule are that it must include at least one symbol or keyword, and
there must be no repeated variables standing for non-terminals. Any expression can be used, but if there are
two non-terminals in a row in a rule, only simple expressions may be used (that is, variables, constants, or
bracketed expressions). Rules can use previously defined rules, but may not be recursive. The following
syntax extensions would therefore be valid:

syntax [var] ":=" [val] = Assign var val;
syntax [test] "?" [t] ":" [e] = if test then t else e;
syntax select [x] from [t] where [w] = SelectWhere x t w;
syntax select [x] from [t] = Select x t;

Syntax macros can be further restricted to apply only in patterns (i.e., only on the left hand side of a pattern
match clause) or only in terms (i.e. everywhere but the left hand side of a pattern match clause) by being
marked as pattern or term syntax rules. For example, we might define an interval as follows, with a static
check that the lower bound is below the upper bound using so:

data Interval : Type where
MkInterval : (lower : Float) -> (upper : Float) ->

so (lower < upper) -> Interval

We can define a syntax which, in patterns, always matches oh for the proof argument, and in terms requires
a proof term to be provided:

pattern syntax "[" [x] "..." [y] "]" = MkInterval x y oh
term syntax "[" [x] "..." [y] "]" = MkInterval x y ?bounds_lemma

In terms, the syntax [x...y] will generate a proof obligation bounds_lemma (possibly renamed).
Finally, syntax rules may be used to introduce alternative binding forms. For example, a for loop binds

a variable on each iteration:

syntax for {x} "in" [xs] ":" [body] = forLoop xs (\x => body)

main : IO ()
main = do for x in [1..10]:

putStrLn ("Number " ++ show x)
putStrLn "Done!"

Note that we have used the {x} form to state that x represents a bound variable, substituted on the right
hand side. We have also put "in" in quotation marks since it is already a reserved word.

10.2 dsl notation

The well-typed interpreter in Section 6 is a simple example of a common programming pattern with
dependent types. Namely: describe an object language and its type system with dependent types to guarantee
that only well-typed programs can be represented, then program using that representation. Using this

39

approach we can, for example, write programs for serialising binary data [1] or running concurrent processes
safely [2].

Unfortunately, the form of object language programs makes it rather hard to program this way in practice.
Recall the factorial program in Expr for example:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var stop) (Val 0))

(Val 1) (Op (*) (app fact (Op (-) (Var stop) (Val 1)))
(Var stop)))

Since this is a particularly useful pattern, IDRIS provides syntax overloading [4] to make it easier to program
in such object languages:

dsl expr
lambda = Lam
variable = Var
index_first = stop
index_next = pop

A dsl block describes how each syntactic construct is represented in an object language. Here, in the
expr language, any IDRIS lambda is translated to a Lam constructor; any variable is translated to the Var
constructor, using pop and stop to construct the de Bruijn index (i.e., to count how many bindings since the
variable itself was bound). It is also possible to overload let in this way. We can now write fact as follows:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1) (Op (*) (app fact (Op (-) x (Val 1))) x))

In this new version, expr declares that the next expression will be overloaded. We can take this further,
using idiom brackets, by declaring:

(<$>) : |(f : Expr G (TyFun a t)) -> Expr G a -> Expr G t
(<$>) = \f, a => App f a

pure : Expr G a -> Expr G a
pure = id

Note that there is no need for these to be part of an instance of Applicative, since idiom bracket notation
translates directly to the names <$> and pure, and ad-hoc type-directed overloading is allowed. We can
now say:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1) (Op (*) [| fact (Op (-) x (Val 1)) |] x))

With some more ad-hoc overloading and type class instances, and a new syntax rule, we can even go as far
as:

syntax IF [x] THEN [t] ELSE [e] = If x t e

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => IF x == 0 THEN 1 ELSE [| fact (x - 1) |] * x)

11 Miscellany

In this section we discuss a variety of additional features:

40

• auto, implicit, and default arguments;
• literate programming;
• interfacing with external libraries through the

foreign function interface;

• type providers;
• code generation; and
• the universe hierarchy.

11.1 Auto implicit arguments

We have already seen implicit arguments, which allows arguments to be omitted when they can be inferred
by the type checker, e.g.

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

In other situations, it may be possible to infer arguments not by type checking but by searching the context
for an appropriate value, or constructing a proof. For example, the following definition of head which
requires a proof that the list is non-empty:

isCons : List a -> Bool
isCons [] = False
isCons (x :: xs) = True

head : (xs : List a) -> (isCons xs = True) -> a
head (x :: xs) _ = x

If the list is statically known to be non-empty, either because its value is known or because a proof already
exists in the context, the proof can be constructed automatically. Auto implicit arguments allow this to
happen silently. We define head as follows:

head : (xs : List a) -> {auto p : isCons xs = True} -> a
head (x :: xs) = x

The auto annotation on the implicit argument means that IDRIS will attempt to fill in the implicit argument
using the trivial tactic, which searches through the context for a proof, and tries to solve with refl if
a proof is not found. Now when head is applied, the proof can be omitted. In the case that a proof is not
found, it can be provided explicitly as normal:

head xs {p = ?headProof}

More generally, we can fill in implicit arguments with a default value by annotating them with default.
The definition above is equivalent to:

head : (xs : List a) ->
{default proof { trivial; } p : isCons xs = True} -> a

head (x :: xs) = x

11.2 Implicit conversions

IDRIS supports the creation of implicit conversions, which allow automatic conversion of values from one type
to another when required to make a term type correct. This is intended to increase convenience and reduce
verbosity. A contrived but simple example is the following:

implicit intString : Int -> String
intString = show

test : Int -> String
test x = "Number " ++ x

41

In general, we cannot append an Int to a String, but the implicit conversion function intString can
convert x to a String, so the definition of test is type correct. An implicit conversion is implemented just
like any other function, but given the implicit modifier, and restricted to one explicit argument.

Only one implicit conversion will be applied at a time. That is, implicit conversions cannot be chained.
Implicit conversions of simple types, as above, are however discouraged! More commonly, an implicit
conversion would be used to reduce verbosity in an embedded domain specific language, or to hide details
of a proof. Such examples are beyond the scope of this tutorial.

11.3 Literate programming

Like Haskell, IDRIS supports literate programming. If a file has an extension of .lidr then it is assumed to
be a literate file. In literate programs, everything is assumed to be a comment unless the line begins with a
greater than sign >, for example:

> module literate

This is a comment. The main program is below

> main : IO ()
> main = putStrLn "Hello literate world!\n"

An additional restriction is that there must be a blank line between a program line (beginning with >) and a
comment line (beginning with any other character).

11.4 Foreign function calls

For practical programming, it is often necessary to be able to use external libraries, particularly for interfacing
with the operating system, file system, networking, et cetera. IDRIS provides a lightweight foreign function
interface for achieving this, as part of the prelude. For this, we assume a certain amount of knowledge of C
and the gcc compiler. First, we define a datatype which describes the external types we can handle:

data FTy = FInt | FFloat | FChar | FString | FPtr | FUnit

Each of these corresponds directly to a C type. Respectively: int, double, char, char*, void* and void.
There is also a translation to a concrete IDRIS type, described by the following function:

interpFTy : FTy -> Type
interpFTy FInt = Int
interpFTy FFloat = Float
interpFTy FChar = Char
interpFTy FString = String
interpFTy FPtr = Ptr
interpFTy FUnit = ()

A foreign function is described by a list of input types and a return type, which can then be converted to an
IDRIS type:

ForeignTy : (xs:List FTy) -> (t:FTy) -> Type

A foreign function is assumed to be impure, so ForeignTy builds an IO type, for example:

Idris> ForeignTy [FInt, FString] FString
Int -> String -> IO String : Type

Idris> ForeignTy [FInt, FString] FUnit
Int -> String -> IO () : Type

42

We build a call to a foreign function by giving the name of the function, a list of argument types and the
return type. The built in function mkForeign converts this description to a function callable by IDRIS:

data Foreign : Type -> Type where
FFun : String -> (xs:List FTy) -> (t:FTy) ->

Foreign (ForeignTy xs t)

mkForeign : Foreign x -> x

For example, the putStr function is implemented as follows, as a call to an external function putStr
defined in the run-time system:

putStr : String -> IO ()
putStr x = mkForeign (FFun "putStr" [FString] FUnit) x

Include and linker directives

Foreign function calls are translated directly to calls to C functions, with appropriate conversion between the
IDRIS representation of a value and the C representation. Often this will require extra libraries to be linked
in, or extra header and object files. This is made possible through the following directives:

• %lib target "x" — include the libx library. If the target is C this is equivalent to passing the
-lx option to gcc. If the target is Java the library will be interpreted as a groupId:artifactId-
:packaging:version dependency coordinate for maven.

• %include target "x" — use the header file or import x for the given back end target.

• %link target "x.o" — link with the object file x.o when using the given back end target.

• %dynamic "x.so" — dynamically link the interpreter with the shared object x.so.

Testing foreign function calls

Normally, the Idris interpreter (used for typechecking and at the REPL) will not perform IO actions. Ad-
ditionally, as it neither generates C code nor compiles to machine code, the %lib, %include and %link
directives have no effect. IO actions and FFI calls can be tested using the special REPL command :x EXPR,
and C libraries can be dynamically loaded in the interpreter by using the :dynamic command or the
%dynamic directive. For example:

Idris> :dynamic libm.so
Idris> :x unsafePerformIO ((mkForeign (FFun "sin" [FFloat] FFloat)) 1.6)
0.9995736030415051 : Float

11.5 Type Providers

Idris type providers, inspired by F#’s type providers, are a means of making our types be “about” something
in the world outside of Idris. For example, given a type that represents a database schema and a query that
is checked against it, a type provider could read the schema of a real database during type checking.

Idris type providers use the ordinary execution semantics of Idris to run an IO action and extract the
result. This result is then saved as a constant in the compiled code. It can be a type, in which case it is used
like any other type, or it can be a value, in which case it can be used as any other value, including as an index
in types.

Type providers are still an experimental extension. To enable the extension, use the %language directive:

%language TypeProviders

43

A provider p for some type t is simply an expression of type IO (Provider t). The %provide
directive causes the type checker to execute the action and bind the result to a name. This is perhaps best
illustrated with a simple example. The type provider fromFile reads a text file. If the file consists of the
string "Int", then the type Int will be provided. Otherwise, it will provide the type Nat.

strToType : String -> Type
strToType "Int" = Int
strToType _ = Nat

fromFile : String -> IO (Provider Type)
fromFile fname = do str <- readFile fname

return (Provide (strToType (trim str)))

We then use the %provide directive:

%provide (T1 : Type) with fromFile "theType"

foo : T1
foo = 2

If the file named theType consists of the word Int, then foo will be an Int. Otherwise, it will be a Nat.
When Idris encounters the directive, it first checks that the provider expression fromFile "theType" has
type IO (Provider Type). Next, it executes the provider. If the result is Provide t, then T1 is defined
as t. Otherwise, the result is an error.

Our datatype Provider t has the following definition:

data Provider a = Error String
| Provide a

We have already seen the Provide constructor. The Error constructor allows type providers to return
useful error messages. The example in this section was purposefully simple. More complex type provider
implementations, including a statically-checked SQLite binding, are available in an external collection5.

11.6 JavaScript Target

IDRIS is capable of producing JavaScript code that can be run in a browser as well as in the NodeJS environment
or alike. One can use the FFI to communicate with the JavaScript ecosystem.

Code Generation

Code generation is split into two separate targets. To generate code that is tailored for running in the browser
issue the following command:

$ idris --codegen javascript hello.idr -o hello.js

The resulting file can be embedded into your HTML just like any other JavaScript code.
Generating code for NodeJS is slightly different. IDRIS outputs a JavaScript file that can be directly executed
via node.

$ idris --codegen node hello.idr -o hello
$./hello
Hello world

Take into consideration that the JavaScript code generator is using console.log to write text to stdout,
this means that it will automatically add a newline to the end of each string. This behaviour does not show
up in the NodeJS code generator.

5https://github.com/david-christiansen/idris-type-providers

44

https://github.com/david-christiansen/idris-type-providers

Using the FFI

To write a useful application we need to communicate with the outside world. Maybe we want to manipulate
the DOM or send an Ajax request. For this task we can use the FFI. Since most JavaScript APIs demand
callbacks we need to extend the FFI so we can pass functions as arguments.
The JavaScript FFI works a little bit differently than the regular FFI. It uses positional arguments to directly
insert our arguments into a piece of JavaScript code.
One could use the primitive addition of JavaScript like so:

module Main

primPlus : Int -> Int -> IO Int
primPlus a b = mkForeign (FFun "%0 + %1" [FInt, FInt] FInt) a b

main : IO ()
main = do

a <- primPlus 1 1
b <- primPlus 1 2
print (a, b)

Notice that the %n notation qualifies the position of the n-th argument given to our foreign function starting
from 0. When you need a percent sign rather than a position simply use %% instead.
Passing functions to a foreign function is very similar. Let’s assume that we want to call the following
function from the JavaScript world:

function twice(f, x) {
return f(f(x));

}

We obviously need to pass a function f here (we can infer it from the way we use f in twice, it would be
more obvious if JavaScript had types).
The JavaScript FFI is able to understand functions as arguments when you give it something of type
FFunction. The following example code calls twice in JavaScript and returns the result to our IDRIS
program:

module Main

twice : (Int -> Int) -> Int -> IO Int
twice f x = mkForeign (

FFun "twice(%0,%1)" [FFunction FInt FInt, FInt] FInt
) f x

main : IO ()
main = do

a <- twice (+1) 1
print a

The program outputs 3, just like we expected.

Shrinking down generated JavaScript

IDRIS can produce very big chunks of JavaScript code. However, the generated code can be minified using
the closure-compiler from Google. Any other minifier is also suitable but closure-compiler offers
advanced compilation that does some aggressive inlining and code elimination. IDRIS can take full advantage
of this compilation mode and it’s highly recommended to use it when shipping a JavaScript application
written in IDRIS.

45

11.7 Cumulativity

Since values can appear in types and vice versa, it is natural that types themselves have types. For example:

*universe> :t Nat
Nat : Type

*universe> :t Vect
Vect : Nat -> Type -> Type

But what about the type of Type? If we ask IDRIS it reports

*universe> :t Type
Type : Type 1

If Type were its own type, it would lead to an inconsistency due to Girard’s paradox [5], so internally there
is a hierarchy of types (or universes):

Type : Type 1 : Type 2 : Type 3 : ...

Universes are cumulative, that is, if x : Type n we can also have that x : Type m, as long as n < m.
The typechecker generates such universe constraints and reports an error if any inconsistencies are found.
Ordinarily, a programmer does not need to worry about this, but it does prevent (contrived) programs such
as the following:

myid : (a : Type) -> a -> a
myid _ x = x

idid : (a : Type) -> a -> a
idid = myid _ myid

The application of myid to itself leads to a cycle in the universe hierarchy — myid’s first argument is a Type,
which cannot be at a lower level than required if it is applied to itself.

12 Further Reading

Further information about IDRIS programming, and programming with dependent types in general, can be
obtained from various sources:

• The IDRIS web site (http://idris-lang.org/) and by asking questions on the mailing list.

• The IRC channel #idris, on chat.freenode.net.

• Examining the prelude and exploring the samples in the distribution. The IDRIS source can be found
online at: https://github.com/idris-lang/Idris-dev.

• Existing projects on the Idris Hackers web space: http://idris-hackers.github.io.

• Various papers (e.g. [1, 3, 4]). Although these mostly describe older versions of IDRIS.

46

http://idris-lang.org/
chat.freenode.net
https://github.com/idris-lang/Idris-dev
http://idris-hackers.github.io

References

[1] E. Brady. Idris — systems programming meets full dependent types. In Programming Languages meets
Program Verification (PLPV 2011), pages 43–54, 2011.

[2] E. Brady and K. Hammond. Correct-by-construction concurrency: Using dependent types to verify
implementations of effectful resource usage protocols. Fundamenta Informaticae, 102(2):145–176, 2010.

[3] E. Brady and K. Hammond. Scrapping your inefficient engine: using partial evaluation to improve
domain-specific language implementation. In ICFP ’10: Proceedings of the 15th acm SIGPLAN International
Conference on Functional Programming, pages 297–308, New York, NY, USA, 2010. acm.

[4] E. Brady and K. Hammond. Resource-safe systems programming with embedded domain specific
languages. In Practical Applications of Declarative Languages 2012, LNCS. Springer, 2012. To appear.

[5] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique d’ordre supérieur. PhD
thesis, Université Paris VII, 1972.

[6] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors, To
H.B.Curry: Essays on combinatory logic, lambda calculus and formalism. Academic Press, 1980. A reprint of
an unpublished manuscript from 1969.

[7] C. McBride and J. McKinna. The view from the left. Journal of Functional Programming, 14(1):69–111, 2004.

[8] C. McBride and R. Paterson. Applicative programming with effects. J. Funct. Program., 18:1–13, January
2008.

[9] S. Peyton Jones et al. Haskell 98 language and libraries — the revised report. Available from
http://www.haskell.org/, December 2002.

47

	Introduction
	Intended Audience
	Example Code

	Getting Started
	Prerequisites
	Downloading and Installing
	The Interactive Environment

	Types and Functions
	Primitive Types
	Data Types
	Functions
	Dependent Types
	Vectors
	The Finite Sets
	Implicit Arguments
	``using'' notation

	I/O
	``do'' notation
	Useful Data Types
	List and Vect
	Maybe
	Tuples and Dependent Pairs

	so
	More Expressions
	Dependent Records

	Type Classes
	Default Definitions
	Extending Classes
	Monads and do-notation
	Idiom brackets
	An error-handling interpreter

	Named Instances

	Modules and Namespaces
	Export Modifiers
	Explicit Namespaces
	Parameterised blocks

	Example: The Well-Typed Interpreter
	Unit testing

	Views and the ``with'' rule
	Dependent pattern matching
	The with rule — matching intermediate values

	Theorem Proving
	Equality
	The Empty Type
	Simple Theorems
	Interactive theorem proving
	Totality Checking
	Directives and Compiler Flags for Totality

	Provisional Definitions
	Provisional definitions
	Suspension of Disbelief
	Example: Binary numbers

	Syntax Extensions
	syntax rules
	dsl notation

	Miscellany
	Auto implicit arguments
	Implicit conversions
	Literate programming
	Foreign function calls
	Type Providers
	JavaScript Target
	Cumulativity

	Further Reading

