Idris-dev/rts/idris_rts.h
2020-01-21 08:54:25 +01:00

543 lines
15 KiB
C

#ifndef _IDRISRTS_H
#define _IDRISRTS_H
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#ifdef HAS_PTHREAD
#include <stdarg.h>
#include <pthread.h>
#endif
#include "idris_heap.h"
#include "idris_stats.h"
#ifndef EXIT_SUCCESS
#define EXIT_SUCCESS 0
#endif
#ifndef EXIT_FAILURE
#define EXIT_FAILURE 1
#endif
// Closures
typedef enum {
CT_CON, CT_ARRAY, CT_INT, CT_BIGINT,
CT_FLOAT, CT_STRING, CT_STROFFSET, CT_BITS32,
CT_BITS64, CT_PTR, CT_REF, CT_FWD,
CT_MANAGEDPTR, CT_RAWDATA, CT_CDATA
} ClosureType;
typedef struct Hdr {
uint8_t ty;
uint8_t u8;
uint16_t u16;
uint32_t sz;
} Hdr;
typedef struct Val {
Hdr hdr;
} Val;
typedef struct Val * VAL;
typedef struct Con {
Hdr hdr;
uint32_t tag;
VAL args[0];
} Con;
typedef struct Array {
Hdr hdr;
VAL array[0];
} Array;
typedef struct BigInt {
Hdr hdr;
char big[0];
} BigInt;
typedef struct Float {
Hdr hdr;
double f;
} Float;
typedef struct String {
Hdr hdr;
size_t slen;
char str[0];
} String;
typedef struct StrOffset {
Hdr hdr;
String * base;
size_t offset;
} StrOffset;
typedef struct Bits32 {
Hdr hdr;
uint32_t bits32;
} Bits32;
typedef struct Bits64 {
Hdr hdr;
uint64_t bits64;
} Bits64;
typedef struct Ptr {
Hdr hdr;
void * ptr;
} Ptr;
typedef struct Ref {
Hdr hdr;
VAL ref;
} Ref;
typedef struct Fwd {
Hdr hdr;
VAL fwd;
} Fwd;
typedef struct ManagedPtr {
Hdr hdr;
char mptr[0];
} ManagedPtr;
typedef struct RawData {
Hdr hdr;
char raw[0];
} RawData;
typedef struct CDataC {
Hdr hdr;
CHeapItem * item;
} CDataC;
struct VM;
struct Msg_t {
struct VM* sender;
// An identifier to say which conversation this message is part of.
// Lowest bit is set if the id is the first message in a conversation.
int channel_id;
VAL msg;
};
typedef struct Msg_t Msg;
struct VM {
int active; // 0 if no longer running; keep for message passing
// TODO: If we're going to have lots of concurrent threads,
// we really need to be cleverer than this!
VAL* valstack;
VAL* valstack_top;
VAL* valstack_base;
VAL* stack_max;
CHeap c_heap;
Heap heap;
#ifdef HAS_PTHREAD
pthread_mutex_t inbox_lock;
pthread_mutex_t inbox_block;
pthread_mutex_t alloc_lock;
pthread_cond_t inbox_waiting;
Msg* inbox; // Block of memory for storing messages
Msg* inbox_end; // End of block of memory
int inbox_nextid; // Next channel id
Msg* inbox_write; // Location of next message to write
int processes; // Number of child processes
int max_threads; // maximum number of threads to run in parallel
struct VM* creator; // The VM that created this VM, NULL for root VM
#endif
Stats stats;
VAL ret;
VAL reg1;
};
typedef struct VM VM;
/* C data interface: allocation on the C heap.
*
* Although not enforced in code, CData is meant to be opaque
* and non-RTS code (such as libraries or C bindings) should
* access only its (void *) field called "data".
*
* Feel free to mutate cd->data; the heap does not care
* about its particular value. However, keep in mind
* that it must not break Idris's referential transparency.
*
* If you call cdata_allocate or cdata_manage, the resulting
* CData object *must* be returned from your FFI function so
* that it is inserted in the C heap. Otherwise the memory
* will be leaked.
*/
/// C data block. Contains (void * data).
typedef CHeapItem * CData;
/// Allocate memory, returning the corresponding C data block.
CData cdata_allocate(size_t size, CDataFinalizer * finalizer);
/// Wrap a pointer as a C data block.
/// The size should be an estimate of how much memory, in bytes,
/// is associated with the pointer. This estimate need not be absolutely precise
/// but it is necessary for GC to work effectively.
CData cdata_manage(void * data, size_t size, CDataFinalizer * finalizer);
// Create a new VM
VM* init_vm(int stack_size, size_t heap_size,
int max_threads);
// Get the VM for the current thread
VM* get_vm(void);
// Initialise thread-local data for this VM
void init_threaddata(VM *vm);
// Clean up a VM once it's no longer needed
Stats terminate(VM* vm);
// Create a new VM, set up everything with sensible defaults (use when
// calling Idris from C)
VM* idris_vm(void);
void close_vm(VM* vm);
// Set up key for thread-local data - called once from idris_main
void init_threadkeys(void);
// Functions all take a pointer to their VM, and previous stack base,
// and return nothing.
typedef void*(*func)(VM*, VAL*);
// Register access
#define RVAL (vm->ret)
#define LOC(x) (vm->valstack_base[x])
#define TOP(x) (vm->valstack_top[x])
#define REG1 (vm->reg1)
// Retrieving values
static inline char * getstr(String * x) {
// hdr.u8 used to mark a null string
return x->hdr.u8? NULL : x->str;
}
static inline size_t getstrlen(String * x) {
return x->slen;
}
#define GETSTR(x) (ISSTR(x) ? getstr((String*)(x)) : GETSTROFF(x))
#define GETSTRLEN(x) (ISSTR(x) ? getstrlen((String*)(x)) : GETSTROFFLEN(x))
#define GETPTR(x) (((Ptr*)(x))->ptr)
#define GETMPTR(x) (((ManagedPtr*)(x))->mptr)
#define GETFLOAT(x) (((Float*)(x))->f)
#define GETCDATA(x) (((CDataC*)(x))->item)
#define GETBITS8(x) (GETINT(x))
#define GETBITS16(x) (GETINT(x))
#define GETBITS32(x) (((Bits32*)(x))->bits32)
#define GETBITS64(x) (((Bits64*)(x))->bits64)
// Already checked it's a CT_CON
#define CTAG(x) (((Con*)(x))->tag)
#define CARITY(x) (((Con*)(x))->hdr.u16) // hdr.u16 used to store arity
#define TAG(x) (ISINT(x) || x == NULL ? (-1) : ( GETTY(x) == CT_CON ? CTAG((Con*)x) : (-1)) )
#define ARITY(x) (ISINT(x) || x == NULL ? (-1) : ( GETTY(x) == CT_CON ? CARITY((Con*)x) : (-1)) )
#define CELEM(x) (((x)->hdr.sz - sizeof(Array)) / sizeof(VAL))
#define GETTY(x) (ISINT(x)? CT_INT : (ClosureType)((x)->hdr.ty))
#define SETTY(x,t) ((x)->hdr.ty = t)
// Integers, floats and operators
typedef intptr_t i_int;
// Shifting a negative number left is undefined and (rightly) gives a warning,
// but we're only interested in shifting the bit pattern, so cast it
#define MKINT(x) ((void*)((i_int)((((uintptr_t)x)<<1)+1)))
#define GETINT(x) ((i_int)(x)>>1)
#define ISINT(x) ((((i_int)x)&1) == 1)
#define ISSTR(x) (GETTY(x) == CT_STRING)
#define INTOP(op,x,y) MKINT((i_int)((((i_int)x)>>1) op (((i_int)y)>>1)))
#define UINTOP(op,x,y) MKINT((i_int)((((uintptr_t)x)>>1) op (((uintptr_t)y)>>1)))
#define FLOATOP(op,x,y) MKFLOAT(vm, ((GETFLOAT(x)) op (GETFLOAT(y))))
#define FLOATBOP(op,x,y) MKINT((i_int)(((GETFLOAT(x)) op (GETFLOAT(y)))))
#define ADD(x,y) (void*)(((i_int)x)+(((i_int)y)-1))
#define MULT(x,y) (MKINT((((i_int)x)>>1) * (((i_int)y)>>1)))
// Stack management
#ifdef IDRIS_TRACE
#define TRACE idris_trace(vm, __FUNCTION__, __LINE__);
#else
#define TRACE
#endif
#define INITFRAME TRACE\
__attribute__((unused)) VAL* myoldbase;\
void* callres
#define REBASE vm->valstack_base = oldbase; return NULL
#define RESERVE(x) do { \
if (vm->valstack_top+(x) > vm->stack_max) { stackOverflow(); } \
else { memset(vm->valstack_top, 0, (x)*sizeof(VAL)); } \
} while(0)
#define RESERVENOALLOC(x) do { \
if (vm->valstack_top+(x) > vm->stack_max) { stackOverflow(); } \
} while(0)
#define ADDTOP(x) vm->valstack_top += (x)
#define TOPBASE(x) vm->valstack_top = vm->valstack_base + (x)
#define BASETOP(x) vm->valstack_base = vm->valstack_top + (x)
#define STOREOLD myoldbase = vm->valstack_base
#define CALL(f) callres = f(vm, myoldbase); \
while(callres!=NULL) { \
callres = ((func)(callres))(vm, myoldbase); \
}
#define TAILCALL(f) return (void*)(f);
// Creating new values (each value placed at the top of the stack)
VAL MKFLOAT(VM* vm, double val);
VAL MKSTR(VM* vm, const char* str);
VAL MKSTRlen(VM* vm, const char* str, size_t size);
VAL MKPTR(VM* vm, void* ptr);
VAL MKMPTR(VM* vm, void* ptr, size_t size);
VAL MKB8(VM* vm, uint8_t b);
VAL MKB16(VM* vm, uint16_t b);
VAL MKB32(VM* vm, uint32_t b);
VAL MKB64(VM* vm, uint64_t b);
VAL MKCDATA(VM* vm, CHeapItem * item);
// following versions don't take a lock when allocating
VAL MKFLOATc(VM* vm, double val);
VAL MKSTROFFc(VM* vm, VAL basestr);
VAL MKSTRc(VM* vm, char* str);
VAL MKSTRclen(VM* vm, char* str, size_t len);
VAL MKPTRc(VM* vm, void* ptr);
VAL MKMPTRc(VM* vm, void* ptr, size_t size);
VAL MKCDATAc(VM* vm, CHeapItem * item);
char* GETSTROFF(VAL stroff);
size_t GETSTROFFLEN(VAL stroff);
#define SETARG(x, i, a) (((Con*)(x))->args)[i] = ((VAL)(a))
#define GETARG(x, i) (((Con*)(x))->args[i])
#define PROJECT(vm,r,loc,num) \
memcpy(&(LOC(loc)), ((Con*)(r))->args, sizeof(VAL)*num)
#define SLIDE(vm, args) \
memmove(&(LOC(0)), &(TOP(0)), sizeof(VAL)*args)
void* iallocate(VM *, size_t, int);
void* allocate(size_t size, int outerlock);
// void* allocCon(VM* vm, int arity, int outerlock);
// When allocating from C, call 'idris_requireAlloc' with a size to
// guarantee that no garbage collection will happen (and hence nothing
// will move) until at least size bytes have been allocated.
// idris_doneAlloc *must* be called when allocation from C is done (as it
// may take a lock if other threads are running).
void idris_requireAlloc(VM *, size_t size);
void idris_doneAlloc(VM *);
// public interface to allocation (note that this may move other pointers
// if allocating beyond the limits given by idris_requireAlloc!)
// 'realloc' just calls alloc and copies; 'free' does nothing
void* idris_alloc(size_t size);
void* idris_realloc(void* old, size_t old_size, size_t size);
void idris_free(void* ptr, size_t size);
static inline void updateConF(Con * cl, unsigned tag, unsigned arity) {
SETTY(cl, CT_CON);
cl->tag = tag;
// hdr.u16 used to store arity
cl->hdr.u16 = arity;
assert(cl->hdr.sz == sizeof(*cl) + sizeof(VAL) * arity);
// cl->hdr.sz = sizeof(*cl) + sizeof(VAL) * arity;
}
static inline Con * allocConF(VM * vm, unsigned tag, unsigned arity, int outer) {
Con * cl = iallocate(vm, sizeof(*cl) + sizeof(VAL) * arity, outer);
SETTY(cl, CT_CON);
cl->tag = tag;
// hdr.u16 used to store arity
cl->hdr.u16 = arity;
return cl;
}
static inline Array * allocArrayF(VM * vm, size_t len, int outer) {
Array * cl = iallocate(vm, sizeof(*cl) + sizeof(VAL) * len, outer);
SETTY(cl, CT_ARRAY);
return cl;
}
#define allocCon(cl, vm, t, a, o) (cl) = (VAL)allocConF(vm, t, a, o)
#define updateCon(cl, old, tag, arity) (cl) = (old); updateConF(cl, tag, arity)
#define NULL_CON(x) ((VAL)(nullary_cons + x))
#define allocArray(cl, vm, len, o) (cl) = (VAL)allocArrayF(vm, len, o)
int idris_errno(void);
char* idris_showerror(int err);
extern Con nullary_cons[];
void init_nullaries(void);
void init_signals(void);
void* vmThread(VM* callvm, func f, VAL arg);
void* idris_stopThread(VM* vm);
// Copy a structure to another vm's heap
VAL copyTo(VM* newVM, VAL x);
// Add a message to another VM's message queue
int idris_sendMessage(VM* sender, int channel_id, VM* dest, VAL msg);
// Check whether there are any messages in the queue and return PID of
// sender if so (null if not)
VM* idris_checkMessages(VM* vm);
// Check whether there are any messages which are initiating a conversation
// in the queue and return the message if so (without removing it)
Msg* idris_checkInitMessages(VM* vm);
// Check whether there are any messages in the queue
VM* idris_checkMessagesFrom(VM* vm, int channel_id, VM* sender);
// Check whether there are any messages in the queue, and wait if not
VM* idris_checkMessagesTimeout(VM* vm, int timeout);
// block until there is a message in the queue
Msg* idris_recvMessage(VM* vm);
// block until there is a message in the queue
Msg* idris_recvMessageFrom(VM* vm, int channel_id, VM* sender);
// Query/free structure used to return message data (recvMessage will malloc,
// so needs an explicit free)
VAL idris_getMsg(Msg* msg);
VM* idris_getSender(Msg* msg);
int idris_getChannel(Msg* msg);
void idris_freeMsg(Msg* msg);
void idris_trace(VM* vm, const char* func, int line);
void dumpVal(VAL r);
void dumpStack(VM* vm);
// Casts
#define idris_castIntFloat(x) MKFLOAT(vm, (double)(GETINT(x)))
#define idris_castFloatInt(x) MKINT((i_int)(GETFLOAT(x)))
VAL idris_castIntStr(VM* vm, VAL i);
VAL idris_castBitsStr(VM* vm, VAL i);
VAL idris_castStrInt(VM* vm, VAL i);
VAL idris_castFloatStr(VM* vm, VAL i);
VAL idris_castStrFloat(VM* vm, VAL i);
// Raw memory manipulation
void idris_memset(void* ptr, i_int offset, uint8_t c, i_int size);
void idris_memmove(void* dest, void* src, i_int dest_offset, i_int src_offset, i_int size);
uint8_t idris_peek(void* ptr, i_int offset);
void idris_poke(void* ptr, i_int offset, uint8_t data);
VAL idris_peekPtr(VM* vm, VAL ptr, VAL offset);
VAL idris_pokePtr(VAL ptr, VAL offset, VAL data);
VAL idris_peekDouble(VM* vm, VAL ptr, VAL offset);
VAL idris_pokeDouble(VAL ptr, VAL offset, VAL data);
VAL idris_peekSingle(VM* vm, VAL ptr, VAL offset);
VAL idris_pokeSingle(VAL ptr, VAL offset, VAL data);
// Crash with a message (used for partial primitives)
void idris_crash(char* msg);
// String primitives
VAL idris_concat(VM* vm, VAL l, VAL r);
VAL idris_strlt(VM* vm, VAL l, VAL r);
VAL idris_streq(VM* vm, VAL l, VAL r);
VAL idris_strlen(VM* vm, VAL l);
// Read a line from a file
VAL idris_readStr(VM* vm, FILE* h);
// Read up to 'num' characters from a file
VAL idris_readChars(VM* vm, int num, FILE* h);
VAL idris_strHead(VM* vm, VAL str);
VAL idris_strShift(VM* vm, VAL str, int num);
VAL idris_strTail(VM* vm, VAL str);
// This is not expected to be efficient! Mostly we wouldn't expect to call
// it at all at run time.
VAL idris_strCons(VM* vm, VAL x, VAL xs);
VAL idris_strIndex(VM* vm, VAL str, VAL i);
VAL idris_strRev(VM* vm, VAL str);
VAL idris_substr(VM* vm, VAL offset, VAL length, VAL str);
// Support for IORefs
VAL idris_newRefLock(VAL x, int outerlock);
VAL idris_newRef(VAL x);
void idris_writeRef(VAL ref, VAL x);
VAL idris_readRef(VAL ref);
// Support for IOArrays
VAL idris_newArray(VM* vm, int size, VAL def);
void idris_arraySet(VAL arr, int index, VAL newval);
VAL idris_arrayGet(VAL arr, int index);
// system infox
// used indices:
// 0 returns backend
// 1 returns OS
VAL idris_systemInfo(VM* vm, VAL index);
// Command line args
extern int __idris_argc;
extern char **__idris_argv;
int idris_numArgs(void);
const char *idris_getArg(int i);
// disable stdin/stdout buffering
void idris_disableBuffering(void);
// Handle stack overflow.
// Just reports an error and exits.
void stackOverflow(void);
// I think these names are nicer for an API...
#define idris_constructor allocCon
#define idris_setConArg SETARG
#define idris_getConArg GETARG
#define idris_mkInt(x) MKINT((intptr_t)(x))
#include "idris_gmp.h"
static inline size_t valSize(VAL v) {
return v->hdr.sz;
}
static inline size_t aligned(size_t sz) {
return (sz + sizeof(void*) - 1) & ~(sizeof(void*)-1);
}
VM* get_vm(void);
#endif
/*
Local variables: **
c-file-style: "bsd" **
c-basic-offset: 4 **
indent-tabs-mode: nil **
End: **
*/