Idris-dev/docs/tutorial/theorems.rst
Jan de Muijnck-Hughes 87039fb0a7 Heading normalisation, and reST usage fixes.
+ Fixed minor reST inconsistencies.
+ Normalised syntax used for headers to become inline with the [convention used for Python](http://sphinx.readthedocs.org/en/latest/rest.html#sections)
2015-03-31 09:47:59 +01:00

292 lines
9.3 KiB
ReStructuredText
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

.. _sect-theorems:
***************
Theorem Proving
***************
Equality
========
Idris allows propositional equalities to be declared, allowing theorems about
programs to be stated and proved. Equality is built in, but conceptually
has the following definition:
.. code-block:: idris
data (=) : a -> b -> Type where
Refl : x = x
Equalities can be proposed between any values of any types, but the only
way to construct a proof of equality is if values actually are equal.
For example:
.. code-block:: idris
fiveIsFive : 5 = 5
fiveIsFive = Refl
twoPlusTwo : 2 + 2 = 4
twoPlusTwo = Refl
.. _sect-empty:
The Empty Type
==============
There is an empty type, :math:`\bot`, which has no constructors. It is
therefore impossible to construct an element of the empty type, at least
without using a partially defined or general recursive function (see
Section :ref:`sect-totality` for more details). We can therefore use the
empty type to prove that something is impossible, for example zero is
never equal to a successor:
.. code-block:: idris
disjoint : (n : Nat) -> Z = S n -> Void
disjoint n p = replace {P = disjointTy} p ()
where
disjointTy : Nat -> Type
disjointTy Z = ()
disjointTy (S k) = Void
There is no need to worry too much about how this function works —
essentially, it applies the library function ``replace``, which uses an
equality proof to transform a predicate. Here we use it to transform a
value of a type which can exist, the empty tuple, to a value of a type
which cant, by using a proof of something which cant exist.
Once we have an element of the empty type, we can prove anything.
``void`` is defined in the library, to assist with proofs by
contradiction.
.. code-block:: idris
void : Void -> a
Simple Theorems
===============
When type checking dependent types, the type itself gets *normalised*.
So imagine we want to prove the following theorem about the reduction
behaviour of ``plus``:
.. code-block:: idris
plusReduces : (n:Nat) -> plus Z n = n
Weve written down the statement of the theorem as a type, in just the
same way as we would write the type of a program. In fact there is no
real distinction between proofs and programs. A proof, as far as we are
concerned here, is merely a program with a precise enough type to
guarantee a particular property of interest.
We wont go into details here, but the Curry-Howard correspondence [1]_
explains this relationship. The proof itself is trivial, because
``plus Z n`` normalises to ``n`` by the definition of ``plus``:
.. code-block:: idris
plusReduces n = Refl
It is slightly harder if we try the arguments the other way, because
plus is defined by recursion on its first argument. The proof also works
by recursion on the first argument to ``plus``, namely ``n``.
.. code-block:: idris
plusReducesZ : (n:Nat) -> n = plus n Z
plusReducesZ Z = Refl
plusReducesZ (S k) = cong (plusReducesZ k)
``cong`` is a function defined in the library which states that equality
respects function application:
.. code-block:: idris
cong : {f : t -> u} -> a = b -> f a = f b
We can do the same for the reduction behaviour of plus on successors:
.. code-block:: idris
plusReducesS : (n:Nat) -> (m:Nat) -> S (plus n m) = plus n (S m)
plusReducesS Z m = Refl
plusReducesS (S k) m = cong (plusReducesS k m)
Even for trival theorems like these, the proofs are a little tricky to
construct in one go. When things get even slightly more complicated, it
becomes too much to think about to construct proofs in this batch
mode.
Idris provides interactive editing capabilities, which can help with
building proofs. For more details on building proofs interactively in
an editor, see :ref:`proofs-index`.
.. _sect-totality:
Totality Checking
=================
If we really want to trust our proofs, it is important that they are
defined by *total* functions — that is, a function which is defined for
all possible inputs and is guaranteed to terminate. Otherwise we could
construct an element of the empty type, from which we could prove
anything:
.. code-block:: idris
-- making use of 'hd' being partially defined
empty1 : Void
empty1 = hd [] where
hd : List a -> a
hd (x :: xs) = x
-- not terminating
empty2 : Void
empty2 = empty2
Internally, Idris checks every definition for totality, and we can check at
the prompt with the ``:total`` command. We see that neither of the above
definitions is total:
::
*theorems> :total empty1
possibly not total due to: empty1#hd
not total as there are missing cases
*theorems> :total empty2
possibly not total due to recursive path empty2
Note the use of the word “possibly” — a totality check can, of course,
never be certain due to the undecidability of the halting problem. The
check is, therefore, conservative. It is also possible (and indeed
advisable, in the case of proofs) to mark functions as total so that it
will be a compile time error for the totality check to fail:
.. code-block:: idris
total empty2 : Void
empty2 = empty2
::
Type checking ./theorems.idr
theorems.idr:25:empty2 is possibly not total due to recursive path empty2
Reassuringly, our proof in Section :ref:`sect-empty` that the zero and
successor constructors are disjoint is total:
.. code-block:: idris
*theorems> :total disjoint
Total
The totality check is, necessarily, conservative. To be recorded as
total, a function ``f`` must:
- Cover all possible inputs
- Be *well-founded* — i.e. by the time a sequence of (possibly
mutually) recursive calls reaches ``f`` again, it must be possible to
show that one of its arguments has decreased.
- Not use any data types which are not *strictly positive*
- Not call any non-total functions
Directives and Compiler Flags for Totality
------------------------------------------
By default, Idris allows all well-typed definitions, whether total or not.
However, it is desirable for functions to be total as far as possible, as this
provides a guarantee that they provide a result for all possible inputs, in
finite time. It is possible to make total functions a requirement, either:
- By using the ``--total`` compiler flag.
- By adding a ``%default total`` directive to a source file. All
definitions after this will be required to be total, unless
explicitly flagged as ``partial``.
All functions *after* a ``%default total`` declaration are required to
be total. Correspondingly, after a ``%default partial`` declaration, the
requirement is relaxed.
Finally, the compiler flag ``--warnpartial`` causes to print a warning
for any undeclared partial function.
Totality checking issues
------------------------
Please note that the totality checker is not perfect! Firstly, it is
necessarily conservative due to the undecidability of the halting
problem, so many programs which *are* total will not be detected as
such. Secondly, the current implementation has had limited effort put
into it so far, so there may still be cases where it believes a function
is total which is not. Do not rely on it for your proofs yet!
Hints for totality
------------------
In cases where you believe a program is total, but Idris does not agree, it is
possible to give hints to the checker to give more detail for a termination
argument. The checker works by ensuring that all chains of recursive calls
eventually lead to one of the arguments decreasing towards a base case, but
sometimes this is hard to spot. For example, the following definition cannot be
checked as ``total`` because the checker cannot decide that ``filter (<= x) xs``
will always be smaller than ``(x :: xs)``:
.. code-block:: idris
qsort : Ord a => List a -> List a
qsort [] = []
qsort (x :: xs)
= qsort (filter (< x) xs) ++
(x :: qsort (filter (>= x) xs))
The function ``assert_smaller``, defined in the Prelude, is intended to
address this problem:
.. code-block:: idris
assert_smaller : a -> a -> a
assert_smaller x y = y
It simply evaluates to its second argument, but also asserts to the
totality checker that ``y`` is structurally smaller than ``x``. This can
be used to explain the reasoning for totality if the checker cannot work
it out itself. The above example can now be written as:
.. code-block:: idris
total
qsort : Ord a => List a -> List a
qsort [] = []
qsort (x :: xs)
= qsort (assert_smaller (x :: xs) (filter (< x) xs)) ++
(x :: qsort (assert_smaller (x :: xs) (filter (>= x) xs)))
The expression ``assert_smaller (x :: xs) (filter (<= x) xs)`` asserts
that the result of the filter will always be smaller than the pattern
``(x :: xs)``.
In more extreme cases, the function ``assert_total`` marks a
subexpression as always being total:
.. code-block:: idris
assert_total : a -> a
assert_total x = x
In general, this function should be avoided, but it can be very useful
when reasoning about primitives or externally defined functions (for
example from a C library) where totality can be shown by an external
argument.
.. [1] Timothy G. Griffin. 1989. A formulae-as-type notion of
control. In Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL
'90). ACM, New York, NY, USA, 47-58. DOI=10.1145/96709.96714
http://doi.acm.org/10.1145/96709.96714