Idris-dev/rts/idris_rts.h
Edwin Brady 7831e10f1c Check messages are passed to active VMs
As currently implemented, this will leak a few bytes per VM after they
terminate, but it is at least better than segfaulting when sending
messages to VMs which have terminated.
2015-07-11 23:11:59 +01:00

342 lines
9.6 KiB
C

#ifndef _IDRISRTS_H
#define _IDRISRTS_H
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#ifdef HAS_PTHREAD
#include <pthread.h>
#endif
#include <stdint.h>
#include "idris_heap.h"
#include "idris_stats.h"
#ifndef EXIT_SUCCESS
#define EXIT_SUCCESS 0
#endif
#ifndef EXIT_FAILURE
#define EXIT_FAILURE 1
#endif
// Closures
typedef enum {
CON, INT, BIGINT, FLOAT, STRING, STROFFSET,
BITS8, BITS16, BITS32, BITS64, UNIT, PTR, FWD,
MANAGEDPTR, RAWDATA
} ClosureType;
typedef struct Closure *VAL;
typedef struct {
uint32_t tag_arity;
VAL args[];
} con;
typedef struct {
VAL str;
size_t offset;
} StrOffset;
// A foreign pointer, managed by the idris GC
typedef struct {
size_t size;
void* data;
} ManagedPtr;
typedef struct Closure {
// Use top 16 bits of ty for saying which heap value is in
// Bottom 16 bits for closure type
//
// NOTE: ty can not have type ClosureType because ty must be a
// uint32_t but enum is platform dependent
uint32_t ty;
union {
con c;
int i;
double f;
char* str;
StrOffset* str_offset;
void* ptr;
uint8_t bits8;
uint16_t bits16;
uint32_t bits32;
uint64_t bits64;
ManagedPtr* mptr;
size_t size;
} info;
} Closure;
struct VM_t;
struct Msg_t {
struct VM_t* sender;
VAL msg;
};
typedef struct Msg_t Msg;
struct VM_t {
int active; // 0 if no longer running; keep for message passing
// TODO: If we're going to have lots of concurrent threads,
// we really need to be cleverer than this!
VAL* valstack;
VAL* valstack_top;
VAL* valstack_base;
VAL* stack_max;
Heap heap;
#ifdef HAS_PTHREAD
pthread_mutex_t inbox_lock;
pthread_mutex_t inbox_block;
pthread_mutex_t alloc_lock;
pthread_cond_t inbox_waiting;
Msg* inbox; // Block of memory for storing messages
Msg* inbox_end; // End of block of memory
Msg* inbox_write; // Location of next message to write
int processes; // Number of child processes
int max_threads; // maximum number of threads to run in parallel
#endif
Stats stats;
VAL ret;
VAL reg1;
};
typedef struct VM_t VM;
// Create a new VM
VM* init_vm(int stack_size, size_t heap_size,
int max_threads);
// Initialise thread-local data for this VM
void init_threaddata(VM *vm);
// Clean up a VM once it's no longer needed
Stats terminate(VM* vm);
// Create a new VM, set up everything with sensible defaults (use when
// calling Idris from C)
VM* idris_vm();
void close_vm(VM* vm);
// Set up key for thread-local data - called once from idris_main
void init_threadkeys();
// Functions all take a pointer to their VM, and previous stack base,
// and return nothing.
typedef void(*func)(VM*, VAL*);
// Register access
#define RVAL (vm->ret)
#define LOC(x) (*(vm->valstack_base + (x)))
#define TOP(x) (*(vm->valstack_top + (x)))
#define REG1 (vm->reg1)
// align pointer
#define ALIGN(__p, __alignment) ((__p + __alignment - 1) & ~(__alignment - 1))
// Retrieving values
#define GETSTR(x) (ISSTR(x) ? (((VAL)(x))->info.str) : GETSTROFF(x))
#define GETPTR(x) (((VAL)(x))->info.ptr)
#define GETMPTR(x) (((VAL)(x))->info.mptr->data)
#define GETFLOAT(x) (((VAL)(x))->info.f)
#define TAG(x) (ISINT(x) || x == NULL ? (-1) : ( GETTY(x) == CON ? (x)->info.c.tag_arity >> 8 : (-1)) )
#define ARITY(x) (ISINT(x) || x == NULL ? (-1) : ( GETTY(x) == CON ? (x)->info.c.tag_arity & 0x000000ff : (-1)) )
// Already checked it's a CON
#define CTAG(x) (((x)->info.c.tag_arity) >> 8)
#define CARITY(x) ((x)->info.c.tag_arity & 0x000000ff)
// Use top 16 bits for saying which heap value is in
// Bottom 16 bits for closure type
#define GETTY(x) ((x)->ty & 0x0000ffff)
#define SETTY(x,t) (x)->ty = (((x)->ty & 0xffff0000) | (t))
#define GETHEAP(x) ((x)->ty >> 16)
#define SETHEAP(x,y) (x)->ty = (((x)->ty & 0x0000ffff) | ((y) << 16))
// Integers, floats and operators
typedef intptr_t i_int;
#define MKINT(x) ((void*)((x)<<1)+1)
#define GETINT(x) ((i_int)(x)>>1)
#define ISINT(x) ((((i_int)x)&1) == 1)
#define ISSTR(x) (GETTY(x) == STRING)
#define INTOP(op,x,y) MKINT((i_int)((((i_int)x)>>1) op (((i_int)y)>>1)))
#define UINTOP(op,x,y) MKINT((i_int)((((uintptr_t)x)>>1) op (((uintptr_t)y)>>1)))
#define FLOATOP(op,x,y) MKFLOAT(vm, ((GETFLOAT(x)) op (GETFLOAT(y))))
#define FLOATBOP(op,x,y) MKINT((i_int)(((GETFLOAT(x)) op (GETFLOAT(y)))))
#define ADD(x,y) (void*)(((i_int)x)+(((i_int)y)-1))
#define MULT(x,y) (MKINT((((i_int)x)>>1) * (((i_int)y)>>1)))
// Stack management
#define INITFRAME VAL* myoldbase
#define REBASE vm->valstack_base = oldbase
#define RESERVE(x) if (vm->valstack_top+(x) > vm->stack_max) { stackOverflow(); } \
else { memset(vm->valstack_top, 0, (x)*sizeof(VAL)); }
#define ADDTOP(x) vm->valstack_top += (x)
#define TOPBASE(x) vm->valstack_top = vm->valstack_base + (x)
#define BASETOP(x) vm->valstack_base = vm->valstack_top + (x)
#define STOREOLD myoldbase = vm->valstack_base
#define CALL(f) f(vm, myoldbase);
#define TAILCALL(f) f(vm, oldbase);
// Creating new values (each value placed at the top of the stack)
VAL MKFLOAT(VM* vm, double val);
VAL MKSTR(VM* vm, const char* str);
VAL MKPTR(VM* vm, void* ptr);
VAL MKMPTR(VM* vm, void* ptr, size_t size);
VAL MKB8(VM* vm, uint8_t b);
VAL MKB16(VM* vm, uint16_t b);
VAL MKB32(VM* vm, uint32_t b);
VAL MKB64(VM* vm, uint64_t b);
// following versions don't take a lock when allocating
VAL MKFLOATc(VM* vm, double val);
VAL MKSTROFFc(VM* vm, StrOffset* off);
VAL MKSTRc(VM* vm, char* str);
VAL MKPTRc(VM* vm, void* ptr);
VAL MKMPTRc(VM* vm, void* ptr, size_t size);
char* GETSTROFF(VAL stroff);
// #define SETTAG(x, a) (x)->info.c.tag = (a)
#define SETARG(x, i, a) ((x)->info.c.args)[i] = ((VAL)(a))
#define GETARG(x, i) ((x)->info.c.args)[i]
void PROJECT(VM* vm, VAL r, int loc, int arity);
void SLIDE(VM* vm, int args);
void* allocate(size_t size, int outerlock);
// void* allocCon(VM* vm, int arity, int outerlock);
// When allocating from C, call 'idris_requireAlloc' with a size to
// guarantee that no garbage collection will happen (and hence nothing
// will move) until at least size bytes have been allocated.
// idris_doneAlloc *must* be called when allocation from C is done (as it
// may take a lock if other threads are running).
void idris_requireAlloc(size_t size);
void idris_doneAlloc();
// public interface to allocation (note that this may move other pointers
// if allocating beyond the limits given by idris_requireAlloc!)
// 'realloc' just calls alloc and copies; 'free' does nothing
void* idris_alloc(size_t size);
void* idris_realloc(void* old, size_t old_size, size_t size);
void idris_free(void* ptr, size_t size);
#define allocCon(cl, vm, t, a, o) \
cl = allocate(sizeof(Closure) + sizeof(VAL)*a, o); \
SETTY(cl, CON); \
cl->info.c.tag_arity = ((t) << 8) | (a);
#define updateCon(cl, old, t, a) \
cl = old; \
SETTY(cl, CON); \
cl->info.c.tag_arity = ((t) << 8) | (a);
#define NULL_CON(x) nullary_cons[x]
extern VAL* nullary_cons;
void init_nullaries();
void free_nullaries();
void* vmThread(VM* callvm, func f, VAL arg);
// Copy a structure to another vm's heap
VAL copyTo(VM* newVM, VAL x);
// Add a message to another VM's message queue
int idris_sendMessage(VM* sender, VM* dest, VAL msg);
// Check whether there are any messages in the queue and return PID of
// sender if so (null if not)
VM* idris_checkMessages(VM* vm);
// Check whether there are any messages in the queue
VM* idris_checkMessagesFrom(VM* vm, VM* sender);
// Check whether there are any messages in the queue, and wait if not
VM* idris_checkMessagesTimeout(VM* vm, int timeout);
// block until there is a message in the queue
Msg* idris_recvMessage(VM* vm);
// block until there is a message in the queue
Msg* idris_recvMessageFrom(VM* vm, VM* sender);
// Query/free structure used to return message data (recvMessage will malloc,
// so needs an explicit free)
VAL idris_getMsg(Msg* msg);
VM* idris_getSender(Msg* msg);
void idris_freeMsg(Msg* msg);
void dumpVal(VAL r);
void dumpStack(VM* vm);
// Casts
#define idris_castIntFloat(x) MKFLOAT(vm, (double)(GETINT(x)))
#define idris_castFloatInt(x) MKINT((i_int)(GETFLOAT(x)))
VAL idris_castIntStr(VM* vm, VAL i);
VAL idris_castBitsStr(VM* vm, VAL i);
VAL idris_castStrInt(VM* vm, VAL i);
VAL idris_castFloatStr(VM* vm, VAL i);
VAL idris_castStrFloat(VM* vm, VAL i);
// Raw memory manipulation
void idris_memset(void* ptr, i_int offset, uint8_t c, i_int size);
uint8_t idris_peek(void* ptr, i_int offset);
void idris_poke(void* ptr, i_int offset, uint8_t data);
void idris_memmove(void* dest, void* src, i_int dest_offset, i_int src_offset, i_int size);
// String primitives
VAL idris_concat(VM* vm, VAL l, VAL r);
VAL idris_strlt(VM* vm, VAL l, VAL r);
VAL idris_streq(VM* vm, VAL l, VAL r);
VAL idris_strlen(VM* vm, VAL l);
VAL idris_readStr(VM* vm, FILE* h);
VAL idris_strHead(VM* vm, VAL str);
VAL idris_strTail(VM* vm, VAL str);
// This is not expected to be efficient! Mostly we wouldn't expect to call
// it at all at run time.
VAL idris_strCons(VM* vm, VAL x, VAL xs);
VAL idris_strIndex(VM* vm, VAL str, VAL i);
VAL idris_strRev(VM* vm, VAL str);
// system infox
// used indices:
// 0 returns backend
// 1 returns OS
VAL idris_systemInfo(VM* vm, VAL index);
// Command line args
extern int __idris_argc;
extern char **__idris_argv;
int idris_numArgs();
const char *idris_getArg(int i);
// Handle stack overflow.
// Just reports an error and exits.
void stackOverflow();
// I think these names are nicer for an API...
#define idris_constructor allocCon
#define idris_setConArg SETARG
#define idris_getConArg GETARG
#define idris_mkInt(x) MKINT((intptr_t)(x))
#include "idris_gmp.h"
#endif