Idris-dev/examples/binary.idr
Jan de Muijnck-Hughes 17c7240825 Tutorial changes.
+ Tutorial is now developed in a separate github repo.
+ Moved examples to top-level
+ Added binary of tutorial for v0.9.10
2013-11-28 11:40:27 +00:00

63 lines
1.3 KiB
Idris

module Main
data Binary : Nat -> Type where
bEnd : Binary Z
bO : Binary n -> Binary (n + n)
bI : Binary n -> Binary (S (n + n))
instance Show (Binary n) where
show (bO x) = show x ++ "0"
show (bI x) = show x ++ "1"
show bEnd = ""
data Parity : Nat -> Type where
even : Parity (n + n)
odd : Parity (S (n + n))
parity : (n:Nat) -> Parity n
parity Z = even {n=Z}
parity (S Z) = odd {n=Z}
parity (S (S k)) with (parity k)
parity (S (S (j + j))) | even ?= even {n=S j}
parity (S (S (S (j + j)))) | odd ?= odd {n=S j}
natToBin : (n:Nat) -> Binary n
natToBin Z = bEnd
natToBin (S k) with (parity k)
natToBin (S (j + j)) | even = bI (natToBin j)
natToBin (S (S (j + j))) | odd ?= bO (natToBin (S j))
intToNat : Int -> Nat
intToNat 0 = Z
intToNat x = if (x>0) then (S (intToNat (x-1))) else Z
main : IO ()
main = do putStr "Enter a number: "
x <- getLine
print (natToBin (fromInteger (cast x)))
---------- Proofs ----------
parity_lemma_1 = proof {
intros;
rewrite sym (plusSuccRightSucc j j);
trivial;
}
natToBin_lemma_1 = proof {
intro;
intro;
rewrite sym (plusSuccRightSucc j j);
trivial;
}
parity_lemma_2 = proof {
intro;
intro;
rewrite sym (plusSuccRightSucc j j);
trivial;
}